Part ofAdvances in Neural Information Processing Systems 25 (NIPS 2012)
Michael Collins, Shay B. Cohen
We describe an approach to speed-up inference with latent variable PCFGs, which have been shown to be highly effective for natural language parsing. Our approach is based on a tensor formulation recently introduced for spectral estimation of latent-variable PCFGs coupled with a tensor decomposition algorithm well-known in the multilinear algebra literature. We also describe an error bound for this approximation, which bounds the difference between the probabilities calculated by the algorithm and the true probabilities that the approximated model gives. Empirical evaluation on real-world natural language parsing data demonstrates a significant speed-up at minimal cost for parsing performance.
Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.
Use the "Report an Issue" link to request a name change.