Part ofAdvances in Neural Information Processing Systems 24 (NIPS 2011)
Binbin Lin, Chiyuan Zhang, Xiaofei He
This paper studies the problem of semi-supervised learning from the vector field perspective. Many of the existing work use the graph Laplacian to ensure the smoothness of the prediction function on the data manifold. However, beyond smoothness, it is suggested by recent theoretical work that we should ensure second order smoothness for achieving faster rates of convergence for semi-supervised regression problems. To achieve this goal, we show that the second order smoothness measures the linearity of the function, and the gradient field of a linear function has to be a parallel vector field. Consequently, we propose to find a function which minimizes the empirical error, and simultaneously requires its gradient field to be as parallel as possible. We give a continuous objective function on the manifold and discuss how to discretize it by using random points. The discretized optimization problem turns out to be a sparse linear system which can be solved very efficiently. The experimental results have demonstrated the effectiveness of our proposed approach.
Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.
Use the "Report an Issue" link to request a name change.