Movatterモバイル変換


[0]ホーム

URL:


On Learning Discrete Graphical Models using Greedy Methods

Part ofAdvances in Neural Information Processing Systems 24 (NIPS 2011)

BibtexMetadataPaperSpotlightSlide

Authors

Ali Jalali, Christopher C. Johnson, Pradeep K. Ravikumar

Abstract

In this paper, we address the problem of learning the structure of a pairwise graphical model from samples in a high-dimensional setting. Our first main result studies the sparsistency, or consistency in sparsity pattern recovery, properties of a forward-backward greedy algorithm as applied to general statistical models. As a special case, we then apply this algorithm to learn the structure of a discrete graphical model via neighborhood estimation. As a corollary of our general result, we derive sufficient conditions on the number of samples n, the maximum node-degree d and the problem size p, as well as other conditions on the model parameters, so that the algorithm recovers all the edges with high probability. Our result guarantees graph selection for samples scaling as n = Omega(d log(p)), in contrast to existing convex-optimization based algorithms that require a sample complexity of Omega(d^2 log(p)). Further, the greedy algorithm only requires a restricted strong convexity condition which is typically milder than irrepresentability assumptions. We corroborate these results using numerical simulations at the end.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.


[8]ページ先頭

©2009-2025 Movatter.jp