Movatterモバイル変換


[0]ホーム

URL:


The Infinite Partially Observable Markov Decision Process

Part ofAdvances in Neural Information Processing Systems 22 (NIPS 2009)

BibtexMetadataPaper

Authors

Finale Doshi-velez

Abstract

The Partially Observable Markov Decision Process (POMDP) framework has proven useful in planning domains that require balancing actions that increase an agents knowledge and actions that increase an agents reward. Unfortunately, most POMDPs are complex structures with a large number of parameters. In many realworld problems, both the structure and the parameters are difficult to specify from domain knowledge alone. Recent work in Bayesian reinforcement learning has made headway in learning POMDP models; however, this work has largely focused on learning the parameters of the POMDP model. We define an infinite POMDP (iPOMDP) model that does not require knowledge of the size of the state space; instead, it assumes that the number of visited states will grow as the agent explores its world and explicitly models only visited states. We demonstrate the iPOMDP utility on several standard problems.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.


[8]ページ先頭

©2009-2025 Movatter.jp