Part ofAdvances in Neural Information Processing Systems 22 (NIPS 2009)
Stephen Gould, Tianshi Gao, Daphne Koller
Object detection and multi-class image segmentation are two closely related tasks that can be greatly improved when solved jointly by feeding information from one task to the other. However, current state-of-the-art models use a separate representation for each task making joint inference clumsy and leaving classification of many parts of the scene ambiguous. In this work, we propose a hierarchical region-based approach to joint object detection and image segmentation. Our approach reasons about pixels, regions and objects in a coherent probabilistic model. Importantly, our model gives a single unified description of the scene. We explain every pixel in the image and enforce global consistency between all variables in our model. We run experiments on challenging vision datasets and show significant improvement over state-of-the-art object detection accuracy.
Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.
Use the "Report an Issue" link to request a name change.