Part ofAdvances in Neural Information Processing Systems 22 (NIPS 2009)
Marius Kloft, Ulf Brefeld, Pavel Laskov, Klaus-Robert Müller, Alexander Zien, Sören Sonnenburg
Learning linear combinations of multiple kernels is an appealing strategy when the right choice of features is unknown. Previous approaches to multiple kernel learning (MKL) promote sparse kernel combinations and hence support interpretability. Unfortunately, L1-norm MKL is hardly observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures, we generalize MKL to arbitrary Lp-norms. We devise new insights on the connection between several existing MKL formulations and develop two efficient interleaved optimization strategies for arbitrary p>1. Empirically, we demonstrate that the interleaved optimization strategies are much faster compared to the traditionally used wrapper approaches. Finally, we apply Lp-norm MKL to real-world problems from computational biology, showing that non-sparse MKL achieves accuracies that go beyond the state-of-the-art.
Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.
Use the "Report an Issue" link to request a name change.