Movatterモバイル変換


[0]ホーム

URL:


login
A059343
Triangle of nonzero coefficients of Hermite polynomials H_n(x) in increasing powers of x.
12
1, 2, -2, 4, -12, 8, 12, -48, 16, 120, -160, 32, -120, 720, -480, 64, -1680, 3360, -1344, 128, 1680, -13440, 13440, -3584, 256, 30240, -80640, 48384, -9216, 512, -30240, 302400, -403200, 161280, -23040, 1024, -665280, 2217600, -1774080, 506880, -56320, 2048, 665280, -7983360, 13305600
OFFSET
0,2
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 50.
LINKS
M. Abramowitz and I. A. Stegun, eds.,Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Milan Janjic,Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3.
Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang,Finding structure in sequences of real numbers via graph theory: a problem list, arXiv:2012.04625, Dec 08, 2020.
Eric Weisstein's World of Mathematics,Hermite Polynomial
EXAMPLE
1; 2*x; -2+4*x^2; -12*x+8*x^3; ...
MAPLE
with(orthopoly): h:=proc(n) if n mod 2=0 then expand(x^2*H(n, x)) else expand(x*H(n, x)) fi end: seq(seq(coeff(h(n), x^(2*k)), k=1..1+floor(n/2)), n=0..14); # this gives the signed sequence
MATHEMATICA
Flatten[ Table[ Coefficient[ HermiteH[n, x], x, k], {n, 0, 12}, {k, Mod[n, 2], n, 2}]] (*Jean-François Alcover, Jan 23 2012 *)
PROG
(Python)
from sympy import hermite, Poly, Symbol
x = Symbol('x')
def a(n):
return Poly(hermite(n, x), x).coeffs()[::-1]
for n in range(21): print(a(n)) #Indranil Ghosh, May 26 2017
CROSSREFS
If initial zeros are included, same asA060821.
KEYWORD
sign,easy,nice,tabf
AUTHOR
N. J. A. Sloane, Jan 27 2001
EXTENSIONS
Edited byEmeric Deutsch, Jun 05 2004
STATUS
approved


[8]ページ先頭

©2009-2025 Movatter.jp