This report is designed to provide statistical summaries of theenvironmental properties for one or more MLRA Summaries are based onraster data extracted fromfixed-densitysampling of map unit polygons.Percentilesare used as robust metrics of distribution central tendency andspread.
Whiskers extend from the 5th to 95thpercentiles, thebody represents the 25th through 75th percentiles, and the dot is the50th percentile.
Suggested usage:
Aggregatesoilproperties developed from SSURGO/STATSGO at 800m resolution.
These plots are a smooth alternative (denistyestimation) to the classic “binned” (histogram) approachto visualizing distributions. Peaks correspond to values that are mostfrequent within a data set. Each data set (ID / variable) are rescaledto {0,1} so that the y-axis can be interpreted as the “relativeproportion of samples”. Note that density estimates are constrained tothe range defined by the 1–99 percentiles.
Suggested usage:
Aggregatesoilproperties developed from SSURGO/STATSGO at 800m resolution.
Median PPT vs. PET, bounded by 25th and 75th percentile.
Modified box-whisker comparisons by month.
Monthly inter-quartile range.
Table of selectpercentiles, byvariable. In these tables, headings like “Q5” can be interpreted as thethe “5th percentile”; 5% of the data are less than this value. The 50thpercentile (“Q50”) is the median.
| MLRA | Elevation (m) | Effective Precipitation (mm) | Frost-Free Days | Mean Annual Air Temperature (degrees C) | Mean Annual Precipitation (mm) | Growing Degree Days (degrees C) | Fraction of Annual PPT as Rain | Design Freeze Index (degrees C) |
|---|---|---|---|---|---|---|---|---|
| 15 | 436 | -245.28 | 276 | 15.18 | 529 | 2428 | 99 | 0 |
| 18 | 442 | -229.67 | 272 | 16.07 | 597 | 2557 | 99 | 2 |
| 27 | 1356 | -476.25 | 155 | 10.85 | 190 | 1858 | 93 | 242 |
| 35 | 1767 | -426.54 | 170 | 11.64 | 257 | 2056 | 95 | 204 |
| MLRA | Q5 | Q10 | Q25 | Q50 | Q75 | Q90 | Q95 |
|---|---|---|---|---|---|---|---|
| 15 | 82 | 140 | 269 | 436 | 641 | 850 | 967.3 |
| 18 | 99 | 146 | 262 | 442 | 764 | 1229 | 1495.0 |
| 27 | 1174 | 1186 | 1222 | 1356 | 1562 | 1770 | 1906.8 |
| 35 | 1287 | 1404 | 1580 | 1767 | 1960 | 2148 | 2259.0 |
| MLRA | Q5 | Q10 | Q25 | Q50 | Q75 | Q90 | Q95 |
|---|---|---|---|---|---|---|---|
| 15 | -588.16 | -525.98 | -384.38 | -245.28 | -48.40 | 241.25 | 378.35 |
| 18 | -549.78 | -501.15 | -397.52 | -229.67 | -41.76 | 143.77 | 279.67 |
| 27 | -576.57 | -569.79 | -533.59 | -476.25 | -401.17 | -330.62 | -274.62 |
| 35 | -654.56 | -595.77 | -523.71 | -426.54 | -331.65 | -243.04 | -190.22 |
| MLRA | Q5 | Q10 | Q25 | Q50 | Q75 | Q90 | Q95 |
|---|---|---|---|---|---|---|---|
| 15 | 208 | 216 | 239 | 276 | 326 | 365 | 365 |
| 18 | 193 | 210 | 241 | 272 | 312 | 333 | 342 |
| 27 | 126 | 135 | 144 | 155 | 164 | 169 | 174 |
| 35 | 135 | 144 | 157 | 170 | 190 | 210 | 225 |
| MLRA | Q5 | Q10 | Q25 | Q50 | Q75 | Q90 | Q95 |
|---|---|---|---|---|---|---|---|
| 15 | 13.75 | 14.08 | 14.63 | 15.18 | 15.79 | 16.45 | 16.78 |
| 18 | 12.64 | 13.56 | 15.16 | 16.07 | 16.66 | 17.17 | 17.55 |
| 27 | 8.94 | 9.31 | 10.17 | 10.85 | 11.41 | 11.81 | 12.10 |
| 35 | 8.65 | 9.29 | 10.39 | 11.64 | 12.73 | 14.05 | 15.13 |
| MLRA | Q5 | Q10 | Q25 | Q50 | Q75 | Q90 | Q95 |
|---|---|---|---|---|---|---|---|
| 15 | 238.7 | 287 | 386 | 529 | 721 | 1000 | 1165.30 |
| 18 | 295.0 | 326 | 424 | 597 | 791 | 958 | 1100.00 |
| 27 | 129.0 | 132 | 152 | 190 | 228 | 277 | 311.00 |
| 35 | 179.0 | 190 | 214 | 257 | 317 | 383 | 423.15 |
| MLRA | Q5 | Q10 | Q25 | Q50 | Q75 | Q90 | Q95 |
|---|---|---|---|---|---|---|---|
| 15 | 1963.0 | 2058.4 | 2229.0 | 2428 | 2538 | 2647 | 2725 |
| 18 | 1937.5 | 2115.0 | 2404.5 | 2557 | 2660 | 2809 | 2898 |
| 27 | 1490.0 | 1594.0 | 1731.0 | 1858 | 1949 | 2020 | 2061 |
| 35 | 1534.0 | 1664.0 | 1851.0 | 2056 | 2245 | 2428 | 2613 |
| MLRA | Q5 | Q10 | Q25 | Q50 | Q75 | Q90 | Q95 |
|---|---|---|---|---|---|---|---|
| 15 | 96 | 97 | 98 | 99 | 99 | 100 | 100 |
| 18 | 90 | 93 | 98 | 99 | 99 | 99 | 99 |
| 27 | 86 | 89 | 92 | 93 | 95 | 96 | 96 |
| 35 | 90 | 92 | 94 | 95 | 96 | 97 | 98 |
| MLRA | Q5 | Q10 | Q25 | Q50 | Q75 | Q90 | Q95 |
|---|---|---|---|---|---|---|---|
| 15 | 0 | 0 | 0 | 0 | 3 | 5 | 8.0 |
| 18 | 0 | 0 | 0 | 2 | 9 | 33 | 56.5 |
| 27 | 171 | 180 | 198 | 242 | 298 | 328 | 348.0 |
| 35 | 66 | 103 | 152 | 204 | 264 | 315 | 350.0 |
Proportion of samples within each map unit that correspond to 1 of 10possible landform positions, as generated viageomorphonalgorithm. Landform classification bythis methodis scale-invariant and is therefore not affected by computational windowsize selection.
Suggested usage:
| mlra | flat | summit | ridge | shoulder | spur | slope | hollow | footslope | valley | depression |
|---|---|---|---|---|---|---|---|---|---|---|
| 15 | 0.047 | 0.047 | 0.158 | 0.004 | 0.153 | 0.191 | 0.127 | 0.017 | 0.207 | 0.048 |
| 18 | 0.041 | 0.035 | 0.150 | 0.011 | 0.157 | 0.198 | 0.149 | 0.026 | 0.198 | 0.035 |
| 27 | 0.409 | 0.014 | 0.053 | 0.007 | 0.076 | 0.214 | 0.094 | 0.046 | 0.081 | 0.005 |
| 35 | 0.265 | 0.020 | 0.119 | 0.056 | 0.097 | 0.167 | 0.074 | 0.063 | 0.117 | 0.021 |
These values are from the2011 NLCD (30m)database.
| mlra | Open Water | Developed, Open Space | Developed, Low Intensity | Developed, Medium Intensity | Developed, High Intensity | Deciduous Forest | Evergreen Forest | Mixed Forest | Shrub/Scrub | Cultivated Crops | Woody Wetlands |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 15 | 0.02 | 0.07 | 0.02 | 0.01 | 0 | 0.01 | 0.12 | 0.16 | 0.54 | 0.04 | 0 |
| 18 | 0.04 | 0.05 | 0.01 | 0.00 | 0 | 0.12 | 0.33 | 0.00 | 0.43 | 0.01 | 0 |
| 27 | 0.02 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.04 | 0.00 | 0.92 | 0.01 | 0 |
| 35 | 0.00 | 0.01 | 0.00 | 0.00 | 0 | 0.00 | 0.17 | 0.00 | 0.81 | 0.00 | 0 |
The following “ordination” summarizes environmental variables byMLRA. The flattening of multivariate data (16 dimensions) onto anoptimal 2D projection is performed usingprincipalcoordinates. Ellipses represent 50% probability contours viamultivariate homogeneity of group dispersions. MLRAdelineations with more than 1,000 samples are (sub-sampled viacLHS).MLRA with very low variation in environmental variables can result intightly clustered points in the ordination. Seethischapter, from the newStatistics for Soil Scientists NEDScourse, for an soils-specific introduction to these concepts.
Suggested usage:
Pair-wise comparisons at the 90% level of confidence.
The following figure highlights shared information among raster datasources based onSpearman’sRanked Correlation coefficient. Branch height is associated with thedegree of shared information between raster data.
Suggested usage:
The following figure ranks raster data sources in terms of howaccurately each can be used to discriminate between map unitconcepts.
Suggested usage: