matplotlib.pyplot
¶Provides a MATLAB-like plotting framework.
pylab
combines pyplot with numpy into a single namespace.This is convenient for interactive work, but for programming itis recommended that the namespaces be kept separate, e.g.:
importnumpyasnpimportmatplotlib.pyplotaspltx=np.arange(0,5,0.1);y=np.sin(x)plt.plot(x,y)
matplotlib.pyplot.
acorr
(x,hold=None,data=None,**kwargs)¶Plot the autocorrelation ofx
.
Parameters: | x : sequence of scalar hold : boolean, optional,deprecated, default: True detrend : callable, optional, default:
normed : boolean, optional, default: True
usevlines : boolean, optional, default: True
maxlags : integer, optional, default: 10
|
---|---|
Returns: | (lags, c, line, b) : where: |
Other Parameters: | |
linestyle :
marker : string, optional, default: ‘o’ |
Notes
The cross correlation is performed withnumpy.correlate()
withmode
= 2.
Examples
xcorr
is top graph, andacorr
is bottom graph.
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
angle_spectrum
(x,Fs=None,Fc=None,window=None,pad_to=None,sides=None,hold=None,data=None,**kwargs)¶Plot the angle spectrum.
Call signature:
angle_spectrum(x,Fs=2,Fc=0,window=mlab.window_hanning,pad_to=None,sides='default',**kwargs)
Compute the angle spectrum (wrapped phase spectrum) ofx.Data is padded to a length ofpad_to and the windowing functionwindow is applied to the signal.
Parameters: | x : 1-D array or sequence
Fs : scalar
window : callable or ndarray
sides : [ ‘default’ | ‘onesided’ | ‘twosided’ ]
pad_to : integer
Fc : integer
**kwargs :
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Returns: | spectrum : 1-D array
freqs : 1-D array
line : a
|
See also
magnitude_spectrum()
angle_spectrum()
plots the magnitudes of the corresponding frequencies.phase_spectrum()
phase_spectrum()
plots the unwrapped version of this function.specgram()
specgram()
can plot the angle spectrum of segments within the signal in a colormap.
Examples
matplotlib.pyplot.
annotate
(*args,**kwargs)¶Annotate the pointxy
with texts
.
Additional kwargs are passed toText
.
Parameters: | s : str
xy : iterable
xytext : iterable, optional
xycoords : str, Artist, Transform, callable or tuple, optional
textcoords : str,
arrowprops : dict, optional
annotation_clip : bool, optional
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Returns: | Annotation |
matplotlib.pyplot.
arrow
(x,y,dx,dy,hold=None,**kwargs)¶Add an arrow to the axes.
Draws arrow on specified axis from (x
,y
) to (x
+dx
,y
+dy
). Uses FancyArrow patch to construct the arrow.
Parameters: | x : float
y : float
dx : float
dy : float
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Returns: | a : FancyArrow
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other Parameters: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Optional kwargs (inherited from FancyArrow patch) control the arrow construction and properties: Constructor arguments
Other valid kwargs (inherited from :class:`Patch`) are:
|
Notes
The resulting arrow is affected by the axes aspect ratio and limits.This may produce an arrow whose head is not square with its stem. Tocreate an arrow whose head is square with its stem, useannotate()
for example:
ax.annotate("",xy=(0.5,0.5),xytext=(0,0),arrowprops=dict(arrowstyle="->"))
Examples
matplotlib.pyplot.
autoscale
(enable=True,axis='both',tight=None)¶Autoscale the axis view to the data (toggle).
Convenience method for simple axis view autoscaling.It turns autoscaling on or off, and then,if autoscaling for either axis is on, it performsthe autoscaling on the specified axis or axes.
Returns None.
matplotlib.pyplot.
autumn
()¶set the default colormap to autumn and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
axes
(*args,**kwargs)¶Add an axes to the figure.
The axes is added at positionrect specified by:
axes()
by itself creates a default fullsubplot(111)
window axis.axes(rect,facecolor='w')
whererect = [left, bottom, width,height] in normalized (0, 1) units.facecolor is the backgroundcolor for the axis, default white.axes(h)
whereh is an axes instance makesh the currentaxis. AnAxes
instance is returned.kwarg | Accepts | Description |
---|---|---|
facecolor | color | the axes background color |
frameon | [True|False] | display the frame? |
sharex | otherax | current axes shares xaxis attributewith otherax |
sharey | otherax | current axes shares yaxis attributewith otherax |
polar | [True|False] | use a polar axes? |
aspect | [str | num] | [‘equal’, ‘auto’] or a number. If a numberthe ratio of x-unit/y-unit in screen-space.Also seeset_aspect() . |
Examples:
examples/pylab_examples/axes_demo.py
places custom axes.examples/pylab_examples/shared_axis_demo.py
usessharex andsharey.matplotlib.pyplot.
axhline
(y=0,xmin=0,xmax=1,hold=None,**kwargs)¶Add a horizontal line across the axis.
Parameters: | y : scalar, optional, default: 0
xmin : scalar, optional, default: 0
xmax : scalar, optional, default: 1
|
---|---|
Returns: |
See also
axhspan
Notes
kwargs are passed toLine2D
and can be usedto control the line properties.
Examples
draw a thick red hline at ‘y’ = 0 that spans the xrange:
>>>axhline(linewidth=4,color='r')
draw a default hline at ‘y’ = 1 that spans the xrange:
>>>axhline(y=1)
draw a default hline at ‘y’ = .5 that spans the middle half ofthe xrange:
>>>axhline(y=.5,xmin=0.25,xmax=0.75)
Valid kwargs areLine2D
properties,with the exception of ‘transform’:
Property Description agg_filter
unknown alpha
float (0.0 transparent through 1.0 opaque) animated
[True | False] antialiased
or aa[True | False] axes
an Axes
instanceclip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]color
or cany matplotlib color contains
a callable function dash_capstyle
[‘butt’ | ‘round’ | ‘projecting’] dash_joinstyle
[‘miter’ | ‘round’ | ‘bevel’] dashes
sequence of on/off ink in points drawstyle
[‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’] figure
a matplotlib.figure.Figure
instancefillstyle
[‘full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’] gid
an id string label
string or anything printable with ‘%s’ conversion. linestyle
or ls[‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | '-'
|'--'
|'-.'
|':'
|'None'
|''
|''
]linewidth
or lwfloat value in points marker
Avalidmarkerstyle
markeredgecolor
or mecany matplotlib color markeredgewidth
or mewfloat value in points markerfacecolor
or mfcany matplotlib color markerfacecoloralt
or mfcaltany matplotlib color markersize
or msfloat markevery
[None | int | length-2 tuple of int | slice | list/array of int | float | length-2 tuple of float] path_effects
unknown picker
float distance in points or callable pick function fn(artist,event)
pickradius
float distance in points rasterized
[True | False | None] sketch_params
unknown snap
unknown solid_capstyle
[‘butt’ | ‘round’ | ‘projecting’] solid_joinstyle
[‘miter’ | ‘round’ | ‘bevel’] transform
a matplotlib.transforms.Transform
instanceurl
a url string visible
[True | False] xdata
1D array ydata
1D array zorder
any number
matplotlib.pyplot.
axhspan
(ymin,ymax,xmin=0,xmax=1,hold=None,**kwargs)¶Add a horizontal span (rectangle) across the axis.
Draw a horizontal span (rectangle) fromymin toymax.With the default values ofxmin = 0 andxmax = 1, thisalways spans the xrange, regardless of the xlim settings, evenif you change them, e.g., with theset_xlim()
command.That is, the horizontal extent is in axes coords: 0=left,0.5=middle, 1.0=right but they location is in datacoordinates.
Parameters: | ymin : float
ymax : float
xmin : float, optional, default: 0
xmax : float, optional, default: 1
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Returns: | Polygon : | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other Parameters: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
kwargs :
|
See also
axvspan
Examples
matplotlib.pyplot.
axis
(*v,**kwargs)¶Convenience method to get or set axis properties.
Calling with no arguments:
>>>axis()
returns the current axes limits[xmin,xmax,ymin,ymax]
.:
>>>axis(v)
sets the min and max of the x and y axes, withv=[xmin,xmax,ymin,ymax]
.:
>>>axis('off')
turns off the axis lines and labels.:
>>>axis('equal')
changes limits ofx ory axis so that equal increments ofxandy have the same length; a circle is circular.:
>>>axis('scaled')
achieves the same result by changing the dimensions of the plot box insteadof the axis data limits.:
>>>axis('tight')
changesx andy axis limits such that all data is shown. Ifall data is already shown, it will move it to the center of thefigure without modifying (xmax -xmin) or (ymax -ymin). Note this is slightly different than in MATLAB.:
>>>axis('image')
is ‘scaled’ with the axis limits equal to the data limits.:
>>>axis('auto')
and:
>>>axis('normal')
are deprecated. They restore default behavior; axis limits are automaticallyscaled to make the data fit comfortably within the plot box.
iflen(*v)==0
, you can pass inxmin,xmax,ymin,ymaxas kwargs selectively to alter just those limits without changingthe others.
>>>axis('square')
changes the limit ranges (xmax-xmin) and (ymax-ymin) ofthex andy axes to be the same, and have the same scaling,resulting in a square plot.
The xmin, xmax, ymin, ymax tuple is returned
matplotlib.pyplot.
axvline
(x=0,ymin=0,ymax=1,hold=None,**kwargs)¶Add a vertical line across the axes.
Parameters: | x : scalar, optional, default: 0
ymin : scalar, optional, default: 0
ymax : scalar, optional, default: 1
|
---|---|
Returns: |
See also
axhspan
Examples
draw a thick red vline atx = 0 that spans the yrange:
>>>axvline(linewidth=4,color='r')
draw a default vline atx = 1 that spans the yrange:
>>>axvline(x=1)
draw a default vline atx = .5 that spans the middle half ofthe yrange:
>>>axvline(x=.5,ymin=0.25,ymax=0.75)
Valid kwargs areLine2D
properties,with the exception of ‘transform’:
Property Description agg_filter
unknown alpha
float (0.0 transparent through 1.0 opaque) animated
[True | False] antialiased
or aa[True | False] axes
an Axes
instanceclip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]color
or cany matplotlib color contains
a callable function dash_capstyle
[‘butt’ | ‘round’ | ‘projecting’] dash_joinstyle
[‘miter’ | ‘round’ | ‘bevel’] dashes
sequence of on/off ink in points drawstyle
[‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’] figure
a matplotlib.figure.Figure
instancefillstyle
[‘full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’] gid
an id string label
string or anything printable with ‘%s’ conversion. linestyle
or ls[‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | '-'
|'--'
|'-.'
|':'
|'None'
|''
|''
]linewidth
or lwfloat value in points marker
Avalidmarkerstyle
markeredgecolor
or mecany matplotlib color markeredgewidth
or mewfloat value in points markerfacecolor
or mfcany matplotlib color markerfacecoloralt
or mfcaltany matplotlib color markersize
or msfloat markevery
[None | int | length-2 tuple of int | slice | list/array of int | float | length-2 tuple of float] path_effects
unknown picker
float distance in points or callable pick function fn(artist,event)
pickradius
float distance in points rasterized
[True | False | None] sketch_params
unknown snap
unknown solid_capstyle
[‘butt’ | ‘round’ | ‘projecting’] solid_joinstyle
[‘miter’ | ‘round’ | ‘bevel’] transform
a matplotlib.transforms.Transform
instanceurl
a url string visible
[True | False] xdata
1D array ydata
1D array zorder
any number
matplotlib.pyplot.
axvspan
(xmin,xmax,ymin=0,ymax=1,hold=None,**kwargs)¶Add a vertical span (rectangle) across the axes.
Draw a vertical span (rectangle) fromxmin
toxmax
. Withthe default values ofymin
= 0 andymax
= 1. This alwaysspans the yrange, regardless of the ylim settings, even if youchange them, e.g., with theset_ylim()
command. That is,the vertical extent is in axes coords: 0=bottom, 0.5=middle,1.0=top but the y location is in data coordinates.
Parameters: | xmin : scalar
xmax : scalar
ymin : scalar, optional
ymax : scalar, optional
|
---|---|
Returns: | rectangle : matplotlib.patches.Polygon
|
Other Parameters: | |
**kwargs
|
See also
Examples
Draw a vertical, green, translucent rectangle from x = 1.25 tox = 1.55 that spans the yrange of the axes.
>>>axvspan(1.25,1.55,facecolor='g',alpha=0.5)
matplotlib.pyplot.
bar
(left,height,width=0.8,bottom=None,hold=None,data=None,**kwargs)¶Make a bar plot.
Make a bar plot with rectangles bounded by:
left
,left
+width
,bottom
,bottom
+height
- (left, right, bottom and top edges)
Parameters: | left : sequence of scalars
height : sequence of scalars
width : scalar or array-like, optional
bottom : scalar or array-like, optional
color : scalar or array-like, optional
edgecolor : scalar or array-like, optional
linewidth : scalar or array-like, optional
tick_label : string or array-like, optional
xerr : scalar or array-like, optional
yerr : scalar or array-like, optional
ecolor : scalar or array-like, optional
capsize : scalar, optional
error_kw : dict, optional
align : {‘center’, ‘edge’}, optional
orientation : {‘vertical’, ‘horizontal’}, optional
log : boolean, optional
|
---|---|
Returns: | bars : matplotlib.container.BarContainer
|
See also
barh
Notes
The optional argumentscolor
,edgecolor
,linewidth
,xerr
, andyerr
can be either scalars or sequences oflength equal to the number of bars. This enables you to usebar as the basis for stacked bar charts, or candlestick plots.Detail:xerr
andyerr
are passed directly toerrorbar()
, so they can also have shape 2xN forindependent specification of lower and upper errors.
Other optional kwargs:
Property Description agg_filter
unknown alpha
float or None animated
[True | False] antialiased
or aa[True | False] or None for default axes
an Axes
instancecapstyle
[‘butt’ | ‘round’ | ‘projecting’] clip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]color
matplotlib color spec contains
a callable function edgecolor
or ecmpl color spec, None, ‘none’, or ‘auto’ facecolor
or fcmpl color spec, or None for default, or ‘none’ for no color figure
a matplotlib.figure.Figure
instancefill
[True | False] gid
an id string hatch
[‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’] joinstyle
[‘miter’ | ‘round’ | ‘bevel’] label
string or anything printable with ‘%s’ conversion. linestyle
or ls[‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | '-'
|'--'
|'-.'
|':'
|'None'
|''
|''
]linewidth
or lwfloat or None for default path_effects
unknown picker
[None|float|boolean|callable] rasterized
[True | False | None] sketch_params
unknown snap
unknown transform
Transform
instanceurl
a url string visible
[True | False] zorder
any number
Examples
Example: A stacked bar chart.
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
barbs
(*args,**kw)¶Plot a 2-D field of barbs.
Call signatures:
barb(U,V,**kw)barb(U,V,C,**kw)barb(X,Y,U,V,**kw)barb(X,Y,U,V,C,**kw)
Arguments:
- X,Y:
- The x and y coordinates of the barb locations(default is head of barb; seepivot kwarg)
- U,V:
- Give the x and y components of the barb shaft
- C:
- An optional array used to map colors to the barbs
All arguments may be 1-D or 2-D arrays or sequences. IfX andYare absent, they will be generated as a uniform grid. IfU andVare 2-D arrays butX andY are 1-D, and iflen(X)
andlen(Y)
match the column and row dimensions ofU, thenX andY will beexpanded withnumpy.meshgrid()
.
U,V,C may be masked arrays, but maskedX,Y are notsupported at present.
Keyword arguments:
- length:
- Length of the barb in points; the other parts of the barbare scaled against this.Default is 9
- pivot: [ ‘tip’ | ‘middle’ ]
- The part of the arrow that is at the grid point; the arrow rotatesabout this point, hence the namepivot. Default is ‘tip’
- barbcolor: [ color | color sequence ]
- Specifies the color all parts of the barb except any flags. Thisparameter is analagous to theedgecolor parameter for polygons,which can be used instead. However this parameter will overridefacecolor.
- flagcolor: [ color | color sequence ]
- Specifies the color of any flags on the barb. This parameter isanalagous to thefacecolor parameter for polygons, which can beused instead. However this parameter will override facecolor. Ifthis is not set (andC has not either) thenflagcolor will beset to matchbarbcolor so that the barb has a uniform color. IfC has been set,flagcolor has no effect.
- sizes:
A dictionary of coefficients specifying the ratio of a givenfeature to the length of the barb. Only those values one wishes tooverride need to be included. These features include:
- ‘spacing’ - space between features (flags, full/half barbs)
- ‘height’ - height (distance from shaft to top) of a flag orfull barb
- ‘width’ - width of a flag, twice the width of a full barb
- ‘emptybarb’ - radius of the circle used for low magnitudes
- fill_empty:
- A flag on whether the empty barbs (circles) that are drawn shouldbe filled with the flag color. If they are not filled, they willbe drawn such that no color is applied to the center. Default isFalse
- rounding:
- A flag to indicate whether the vector magnitude should be roundedwhen allocating barb components. If True, the magnitude isrounded to the nearest multiple of the half-barb increment. IfFalse, the magnitude is simply truncated to the next lowestmultiple. Default is True
- barb_increments:
A dictionary of increments specifying values to associate withdifferent parts of the barb. Only those values one wishes tooverride need to be included.
- ‘half’ - half barbs (Default is 5)
- ‘full’ - full barbs (Default is 10)
- ‘flag’ - flags (default is 50)
- flip_barb:
- Either a single boolean flag or an array of booleans. Singleboolean indicates whether the lines and flags should pointopposite to normal for all barbs. An array (which should be thesame size as the other data arrays) indicates whether to flip foreach individual barb. Normal behavior is for the barbs and linesto point right (comes from wind barbs having these features pointtowards low pressure in the Northern Hemisphere.) Default isFalse
Barbs are traditionally used in meteorology as a way to plot the speedand direction of wind observations, but can technically be used toplot any two dimensional vector quantity. As opposed to arrows, whichgive vector magnitude by the length of the arrow, the barbs give morequantitative information about the vector magnitude by putting slantedlines or a triangle for various increments in magnitude, as showschematically below:
:/\ \:/ \ \:/ \ \ \:/ \ \ \:------------------------------
The largest increment is given by a triangle (or “flag”). After thosecome full lines (barbs). The smallest increment is a half line. Thereis only, of course, ever at most 1 half line. If the magnitude issmall and only needs a single half-line and no full lines ortriangles, the half-line is offset from the end of the barb so that itcan be easily distinguished from barbs with a single full line. Themagnitude for the barb shown above would nominally be 65, using thestandard increments of 50, 10, and 5.
linewidths and edgecolors can be used to customize the barb.AdditionalPolyCollection
keywordarguments:
Property Description agg_filter
unknown alpha
float or None animated
[True | False] antialiased
or antialiasedsBoolean or sequence of booleans array
unknown axes
an Axes
instanceclim
a length 2 sequence of floats clip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]cmap
a colormap or registered colormap name color
matplotlib color arg or sequence of rgba tuples contains
a callable function edgecolor
or edgecolorsmatplotlib color spec or sequence of specs facecolor
or facecolorsmatplotlib color spec or sequence of specs figure
a matplotlib.figure.Figure
instancegid
an id string hatch
[ ‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’ ] label
string or anything printable with ‘%s’ conversion. linestyle
or dashes or linestyles[‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | '-'
|'--'
|'-.'
|':'
|'None'
|''
|''
]linewidth
or linewidths or lwfloat or sequence of floats norm
unknown offset_position
unknown offsets
float or sequence of floats path_effects
unknown picker
[None|float|boolean|callable] pickradius
unknown rasterized
[True | False | None] sketch_params
unknown snap
unknown transform
Transform
instanceurl
a url string urls
unknown visible
[True | False] zorder
any number
Example:
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
barh
(bottom,width,height=0.8,left=None,hold=None,**kwargs)¶Make a horizontal bar plot.
Make a horizontal bar plot with rectangles bounded by:
left
,left
+width
,bottom
,bottom
+height
- (left, right, bottom and top edges)
bottom
,width
,height
, andleft
can be either scalarsor sequences
Parameters: | bottom : scalar or array-like
width : scalar or array-like
height : sequence of scalars, optional, default: 0.8
left : sequence of scalars
|
---|---|
Returns: |
|
Other Parameters: | |
color : scalar or array-like, optional
edgecolor : scalar or array-like, optional
linewidth : scalar or array-like, optional, default: None
tick_label : string or array-like, optional, default: None
xerr : scalar or array-like, optional, default: None
yerr : scalar or array-like, optional, default: None
ecolor : scalar or array-like, optional, default: None
capsize : scalar, optional
error_kw :
align : {‘center’, ‘edge’}, optional
log : boolean, optional, default: False
|
See also
bar
Notes
The optional argumentscolor
,edgecolor
,linewidth
,xerr
, andyerr
can be either scalars or sequences oflength equal to the number of bars. This enables you to usebar as the basis for stacked bar charts, or candlestick plots.Detail:xerr
andyerr
are passed directly toerrorbar()
, so they can also have shape 2xN forindependent specification of lower and upper errors.
Other optional kwargs:
Property Description agg_filter
unknown alpha
float or None animated
[True | False] antialiased
or aa[True | False] or None for default axes
an Axes
instancecapstyle
[‘butt’ | ‘round’ | ‘projecting’] clip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]color
matplotlib color spec contains
a callable function edgecolor
or ecmpl color spec, None, ‘none’, or ‘auto’ facecolor
or fcmpl color spec, or None for default, or ‘none’ for no color figure
a matplotlib.figure.Figure
instancefill
[True | False] gid
an id string hatch
[‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’] joinstyle
[‘miter’ | ‘round’ | ‘bevel’] label
string or anything printable with ‘%s’ conversion. linestyle
or ls[‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | '-'
|'--'
|'-.'
|':'
|'None'
|''
|''
]linewidth
or lwfloat or None for default path_effects
unknown picker
[None|float|boolean|callable] rasterized
[True | False | None] sketch_params
unknown snap
unknown transform
Transform
instanceurl
a url string visible
[True | False] zorder
any number
matplotlib.pyplot.
bone
()¶set the default colormap to bone and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
box
(on=None)¶Turn the axes box on or off.on may be a boolean or a string,‘on’ or ‘off’.
Ifon isNone, toggle state.
matplotlib.pyplot.
boxplot
(x,notch=None,sym=None,vert=None,whis=None,positions=None,widths=None,patch_artist=None,bootstrap=None,usermedians=None,conf_intervals=None,meanline=None,showmeans=None,showcaps=None,showbox=None,showfliers=None,boxprops=None,labels=None,flierprops=None,medianprops=None,meanprops=None,capprops=None,whiskerprops=None,manage_xticks=True,autorange=False,zorder=None,hold=None,data=None)¶Make a box and whisker plot.
Make a box and whisker plot for each column ofx
or eachvector in sequencex
. The box extends from the lower toupper quartile values of the data, with a line at the median.The whiskers extend from the box to show the range of thedata. Flier points are those past the end of the whiskers.
Parameters: | x : Array or a sequence of vectors.
notch : bool, optional (False)
sym : str, optional
vert : bool, optional (True)
whis : float, sequence, or string (default = 1.5)
bootstrap : int, optional
usermedians : array-like, optional
conf_intervals : array-like, optional
positions : array-like, optional
widths : scalar or array-like
patch_artist : bool, optional (False)
labels : sequence, optional
manage_xticks : bool, optional (True)
autorange : bool, optional (False)
meanline : bool, optional (False)
zorder : scalar, optional (None)
|
---|---|
Returns: | result : dict
|
Other Parameters: | |
showcaps : bool, optional (True)
showbox : bool, optional (True)
showfliers : bool, optional (True)
showmeans : bool, optional (False)
capprops : dict, optional (None)
boxprops : dict, optional (None)
whiskerprops : dict, optional (None)
flierprops : dict, optional (None)
medianprops : dict, optional (None)
meanprops : dict, optional (None)
|
Examples
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
broken_barh
(xranges,yrange,hold=None,data=None,**kwargs)¶Plot horizontal bars.
A collection of horizontal bars spanningyrange with a sequence ofxranges.
Required arguments:
Argument Description xranges sequence of (xmin,xwidth) yrange sequence of (ymin,ywidth)
kwargs arematplotlib.collections.BrokenBarHCollection
properties:
Property Description agg_filter
unknown alpha
float or None animated
[True | False] antialiased
or antialiasedsBoolean or sequence of booleans array
unknown axes
an Axes
instanceclim
a length 2 sequence of floats clip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]cmap
a colormap or registered colormap name color
matplotlib color arg or sequence of rgba tuples contains
a callable function edgecolor
or edgecolorsmatplotlib color spec or sequence of specs facecolor
or facecolorsmatplotlib color spec or sequence of specs figure
a matplotlib.figure.Figure
instancegid
an id string hatch
[ ‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’ ] label
string or anything printable with ‘%s’ conversion. linestyle
or dashes or linestyles[‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | '-'
|'--'
|'-.'
|':'
|'None'
|''
|''
]linewidth
or linewidths or lwfloat or sequence of floats norm
unknown offset_position
unknown offsets
float or sequence of floats path_effects
unknown picker
[None|float|boolean|callable] pickradius
unknown rasterized
[True | False | None] sketch_params
unknown snap
unknown transform
Transform
instanceurl
a url string urls
unknown visible
[True | False] zorder
any number
these can either be a single argument, i.e.,:
facecolors='black'
or a sequence of arguments for the various bars, i.e.,:
facecolors=('black','red','green')
Example:
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
cla
()¶Clear the current axes.
matplotlib.pyplot.
clabel
(CS,*args,**kwargs)¶Label a contour plot.
Call signature:
clabel(cs,**kwargs)
Adds labels to line contours incs, wherecs is aContourSet
object returned bycontour.
clabel(cs,v,**kwargs)
only labels contours listed inv.
Optional keyword arguments:
- fontsize:
- size in points or relative size e.g., ‘smaller’, ‘x-large’
- colors:
- ifNone, the color of each label matches the color ofthe corresponding contour
- if one string color, e.g.,colors = ‘r’ orcolors =‘red’, all labels will be plotted in this color
- if a tuple of matplotlib color args (string, float, rgb, etc),different labels will be plotted in different colors in the orderspecified
- inline:
- controls whether the underlying contour is removed ornot. Default isTrue.
- inline_spacing:
- space in pixels to leave on each side of label whenplacing inline. Defaults to 5. This spacing will beexact for labels at locations where the contour isstraight, less so for labels on curved contours.
- fmt:
- a format string for the label. Default is ‘%1.3f’Alternatively, this can be a dictionary matching contourlevels with arbitrary strings to use for each contour level(i.e., fmt[level]=string), or it can be any callable, suchas a
Formatter
instance, thatreturns a string when called with a numeric contour level.- manual:
ifTrue, contour labels will be placed manually usingmouse clicks. Click the first button near a contour toadd a label, click the second button (or potentially bothmouse buttons at once) to finish adding labels. The thirdbutton can be used to remove the last label added, butonly if labels are not inline. Alternatively, the keyboardcan be used to select label locations (enter to end labelplacement, delete or backspace act like the third mouse button,and any other key will select a label location).
manual can be an iterable object of x,y tuples. Contour labelswill be created as if mouse is clicked at each x,y positions.
- rightside_up:
- ifTrue (default), label rotations will always be plusor minus 90 degrees from level.
- use_clabeltext:
- ifTrue (default is False), ClabelText class (instead ofmatplotlib.Text) is used to create labels. ClabelTextrecalculates rotation angles of texts during the drawing time,therefore this can be used if aspect of the axes changes.
matplotlib.pyplot.
clf
()¶Clear the current figure.
matplotlib.pyplot.
clim
(vmin=None,vmax=None)¶Set the color limits of the current image.
To apply clim to all axes images do:
clim(0,0.5)
If eithervmin orvmax is None, the image min/max respectivelywill be used for color scaling.
If you want to set the clim of multiple images,use, for example:
forimingca().get_images():im.set_clim(0,0.05)
matplotlib.pyplot.
close
(*args)¶Close a figure window.
close()
by itself closes the current figure
close(h)
whereh is aFigure
instance, closes that figure
close(num)
closes figure numbernum
close(name)
wherename is a string, closes figure with that label
close('all')
closes all the figure windows
matplotlib.pyplot.
cohere
(x,y,NFFT=256,Fs=2,Fc=0,detrend=<function detrend_none>,window=<function window_hanning>,noverlap=0,pad_to=None,sides='default',scale_by_freq=None,hold=None,data=None,**kwargs)¶Plot the coherence betweenx andy.
Plot the coherence betweenx andy. Coherence is thenormalized cross spectral density:
Parameters: | Fs : scalar
window : callable or ndarray
sides : [ ‘default’ | ‘onesided’ | ‘twosided’ ]
pad_to : integer
NFFT : integer
detrend : {‘default’, ‘constant’, ‘mean’, ‘linear’, ‘none’} or callable
scale_by_freq : boolean, optional
noverlap : integer
Fc : integer
**kwargs :
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Returns: | The return value is a tuple (Cxy,f), wheref are the frequencies of the coherence vector. kwargs are applied to the lines. |
References
Bendat & Piersol – Random Data: Analysis and Measurement Procedures,John Wiley & Sons (1986)
Examples
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
colorbar
(mappable=None,cax=None,ax=None,**kw)¶Add a colorbar to a plot.
Function signatures for thepyplot
interface; allbut the first are also method signatures for thecolorbar()
method:
colorbar(**kwargs)colorbar(mappable,**kwargs)colorbar(mappable,cax=cax,**kwargs)colorbar(mappable,ax=ax,**kwargs)
arguments:
- mappable
- the
Image
,ContourSet
, etc. towhich the colorbar applies; this argument is mandatory for thecolorbar()
method but optional for thecolorbar()
function, which sets thedefault to the current image.
keyword arguments:
- cax
- None | axes object into which the colorbar will be drawn
- ax
- None | parent axes object(s) from which space for a newcolorbar axes will be stolen. If a list of axes is giventhey will all be resized to make room for the colorbar axes.
- use_gridspec
- False | Ifcax is None, a newcax is created as an instance ofAxes. Ifax is an instance of Subplot anduse_gridspec is True,cax is created as an instance of Subplot using thegrid_spec module.
Additional keyword arguments are of two kinds:
axes properties:
Property Description orientation vertical or horizontal fraction 0.15; fraction of original axes to use for colorbar pad 0.05 if vertical, 0.15 if horizontal; fractionof original axes between colorbar and new image axes shrink 1.0; fraction by which to shrink the colorbar aspect 20; ratio of long to short dimensions anchor (0.0, 0.5) if vertical; (0.5, 1.0) if horizontal;the anchor point of the colorbar axes panchor (1.0, 0.5) if vertical; (0.5, 0.0) if horizontal;the anchor point of the colorbar parent axes. IfFalse, the parent axes’ anchor will be unchanged colorbar properties:
Property Description extend [ ‘neither’ | ‘both’ | ‘min’ | ‘max’ ]If not ‘neither’, make pointed end(s) for out-of-range values. These are set for a given colormapusing the colormap set_under and set_over methods. extendfrac [None | ‘auto’ | length | lengths ]If set toNone, both the minimum and maximumtriangular colorbar extensions with have a length of5% of the interior colorbar length (this is thedefault setting). If set to ‘auto’, makes thetriangular colorbar extensions the same lengths asthe interior boxes (whenspacing is set to‘uniform’) or the same lengths as the respectiveadjacent interior boxes (whenspacing is set to‘proportional’). If a scalar, indicates the lengthof both the minimum and maximum triangular colorbarextensions as a fraction of the interior colorbarlength. A two-element sequence of fractions may alsobe given, indicating the lengths of the minimum andmaximum colorbar extensions respectively as afraction of the interior colorbar length. extendrect [False |True ]IfFalse the minimum and maximum colorbar extensionswill be triangular (the default). IfTrue theextensions will be rectangular. spacing [ ‘uniform’ | ‘proportional’ ]Uniform spacing gives each discrete color the samespace; proportional makes the space proportional tothe data interval. ticks [ None | list of ticks | Locator object ]If None, ticks are determined automatically from theinput. format [ None | format string | Formatter object ]If None, the ScalarFormatter
is used.If a format string is given, e.g., ‘%.3f’, that isused. An alternativeFormatter
object may begiven instead.drawedges [ False | True ] If true, draw lines at colorboundaries. The following will probably be useful only in the context ofindexed colors (that is, when the mappable has norm=NoNorm()),or other unusual circumstances.
Property Description boundaries None or a sequence values None or a sequence which must be of length 1 lessthan the sequence ofboundaries. For each regiondelimited by adjacent entries inboundaries, thecolor mapped to the corresponding value in valueswill be used.
Ifmappable is aContourSet
, itsextendkwarg is included automatically.
Note that theshrink kwarg provides a simple way to keep a verticalcolorbar, for example, from being taller than the axes of the mappableto which the colorbar is attached; but it is a manual method requiringsome trial and error. If the colorbar is too tall (or a horizontalcolorbar is too wide) use a smaller value ofshrink.
For more precise control, you can manually specify the positions ofthe axes objects in which the mappable and the colorbar are drawn. Inthis case, do not use any of the axes properties kwargs.
It is known that some vector graphics viewer (svg and pdf) renders white gapsbetween segments of the colorbar. This is due to bugs in the viewers notmatplotlib. As a workaround the colorbar can be rendered with overlappingsegments:
cbar=colorbar()cbar.solids.set_edgecolor("face")draw()
However this has negative consequences in other circumstances. Particularlywith semi transparent images (alpha < 1) and colorbar extensions and is notenabled by default see (issue #1188).
Colorbar
instance; see also its base class,ColorbarBase
. Call theset_label()
methodto label the colorbar.matplotlib.pyplot.
colors
()¶This is a do-nothing function to provide you with help on howmatplotlib handles colors.
Commands which take color arguments can use several formats tospecify the colors. For the basic built-in colors, you can use asingle letter
Alias Color ‘b’ blue ‘g’ green ‘r’ red ‘c’ cyan ‘m’ magenta ‘y’ yellow ‘k’ black ‘w’ white
For a greater range of colors, you have two options. You canspecify the color using an html hex string, as in:
color='#eeefff'
or you can pass an R,G,B tuple, where each of R,G,B are in therange [0,1].
You can also use any legal html name for a color, for example:
color='red'color='burlywood'color='chartreuse'
The example below creates a subplot with a darkslate gray background:
subplot(111,facecolor=(0.1843,0.3098,0.3098))
Here is an example that creates a pale turquoise title:
title('Is this the best color?',color='#afeeee')
matplotlib.pyplot.
connect
(s,func)¶Connect event with strings tofunc. The signature offunc is:
deffunc(event)
where event is amatplotlib.backend_bases.Event
. Thefollowing events are recognized
For the location events (button and key press/release), if themouse is over the axes, the variableevent.inaxes
will beset to theAxes
the event occurs isover, and additionally, the variablesevent.xdata
andevent.ydata
will be defined. This is the mouse locationin data coords. SeeKeyEvent
andMouseEvent
for more info.
Return value is a connection id that can be used withmpl_disconnect()
.
Example usage:
defon_press(event):print('you pressed',event.button,event.xdata,event.ydata)cid=canvas.mpl_connect('button_press_event',on_press)
matplotlib.pyplot.
contour
(*args,**kwargs)¶Plot contours.
contour()
andcontourf()
draw contour lines andfilled contours, respectively. Except as noted, functionsignatures and return values are the same for both versions.
contourf()
differs from the MATLABversion in that it does not draw the polygon edges.To draw edges, add line contours withcalls tocontour()
.
Call signatures:
contour(Z)
make a contour plot of an arrayZ. The level values are chosenautomatically.
contour(X,Y,Z)
X,Y specify the (x, y) coordinates of the surface
contour(Z,N)contour(X,Y,Z,N)
contour up toN automatically-chosen levels.
contour(Z,V)contour(X,Y,Z,V)
draw contour lines at the values specified in sequenceV,which must be in increasing order.
contourf(...,V)
fill thelen(V)-1
regions between the values inV,which must be in increasing order.
contour(Z,**kwargs)
Use keyword args to control colors, linewidth, origin, cmap ... seebelow for more details.
X andY must both be 2-D with the same shape asZ, or theymust both be 1-D such thatlen(X)
is the number of columns inZ andlen(Y)
is the number of rows inZ.
C=contour(...)
returns aQuadContourSet
object.
Optional keyword arguments:
- corner_mask: [True |False | ‘legacy’ ]
Enable/disable corner masking, which only has an effect ifZ isa masked array. IfFalse, any quad touching a masked point ismasked out. IfTrue, only the triangular corners of quadsnearest those points are always masked out, other triangularcorners comprising three unmasked points are contoured as usual.If ‘legacy’, the old contouring algorithm is used, which isequivalent toFalse and is deprecated, only remaining whilst thenew algorithm is tested fully.
If not specified, the default is taken fromrcParams[‘contour.corner_mask’], which is True unless it hasbeen modified.
- colors: [None | string | (mpl_colors) ]
IfNone, the colormap specified by cmap will be used.
If a string, like ‘r’ or ‘red’, all levels will be plotted in thiscolor.
If a tuple of matplotlib color args (string, float, rgb, etc),different levels will be plotted in different colors in the orderspecified.
- alpha: float
- The alpha blending value
- cmap: [None | Colormap ]
- A cm
Colormap
instance orNone. Ifcmap isNone andcolors isNone, adefault Colormap is used.- norm: [None | Normalize ]
- A
matplotlib.colors.Normalize
instance forscaling data values to colors. Ifnorm isNone andcolors isNone, the default linear scaling is used.- vmin,vmax: [None | scalar ]
- If notNone, either or both of these values will besupplied to the
matplotlib.colors.Normalize
instance, overriding the default color scaling based onlevels.- levels: [level0, level1, ..., leveln]
- A list of floating point numbers indicating the levelcurves to draw, in increasing order; e.g., to draw justthe zero contour pass
levels=[0]
- origin: [None | ‘upper’ | ‘lower’ | ‘image’ ]
IfNone, the first value ofZ will correspond to thelower left corner, location (0,0). If ‘image’, the rcvalue for
image.origin
will be used.This keyword is not active ifX andY are specified inthe call to contour.
extent: [None | (x0,x1,y0,y1) ]
Iforigin is notNone, thenextent is interpreted asin
matplotlib.pyplot.imshow()
: it gives the outerpixel boundaries. In this case, the position of Z[0,0]is the center of the pixel, not a corner. Iforigin isNone, then (x0,y0) is the position of Z[0,0], and(x1,y1) is the position of Z[-1,-1].This keyword is not active ifX andY are specified inthe call to contour.
- locator: [None | ticker.Locator subclass ]
- Iflocator isNone, the default
MaxNLocator
is used. Thelocator is used to determine the contour levels if theyare not given explicitly via theV argument.- extend: [ ‘neither’ | ‘both’ | ‘min’ | ‘max’ ]
- Unless this is ‘neither’, contour levels are automaticallyadded to one or both ends of the range so that all dataare included. These added ranges are then mapped to thespecial colormap values which default to the ends of thecolormap range, but can be set via
matplotlib.colors.Colormap.set_under()
andmatplotlib.colors.Colormap.set_over()
methods.- xunits,yunits: [None | registered units ]
- Override axis units by specifying an instance of a
matplotlib.units.ConversionInterface
.- antialiased: [True |False ]
- enable antialiasing, overriding the defaults. Forfilled contours, the default isTrue. For line contours,it is taken from rcParams[‘lines.antialiased’].
- nchunk: [ 0 | integer ]
- If 0, no subdivision of the domain. Specify a positive integer todivide the domain into subdomains ofnchunk bynchunk quads.Chunking reduces the maximum length of polygons generated by thecontouring algorithm which reduces the rendering workload passedon to the backend and also requires slightly less RAM. It canhowever introduce rendering artifacts at chunk boundaries dependingon the backend, theantialiased flag and value ofalpha.
contour-only keyword arguments:
- linewidths: [None | number | tuple of numbers ]
Iflinewidths isNone, the default width in
lines.linewidth
inmatplotlibrc
is used.If a number, all levels will be plotted with this linewidth.
If a tuple, different levels will be plotted with differentlinewidths in the order specified.
- linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’ ]
Iflinestyles isNone, the default is ‘solid’ unlessthe lines are monochrome. In that case, negativecontours will take their linestyle from the
matplotlibrc
contour.negative_linestyle
setting.linestyles can also be an iterable of the above stringsspecifying a set of linestyles to be used. If thisiterable is shorter than the number of contour levelsit will be repeated as necessary.
contourf-only keyword arguments:
- hatches:
- A list of cross hatch patterns to use on the filled areas.If None, no hatching will be added to the contour.Hatching is supported in the PostScript, PDF, SVG and Aggbackends only.
Note: contourf fills intervals that are closed at the top; thatis, for boundariesz1 andz2, the filled region is:
z1<z<=z2
There is one exception: if the lowest boundary coincides withthe minimum value of thez array, then that minimum valuewill be included in the lowest interval.
Examples:
matplotlib.pyplot.
contourf
(*args,**kwargs)¶Plot contours.
contour()
andcontourf()
draw contour lines andfilled contours, respectively. Except as noted, functionsignatures and return values are the same for both versions.
contourf()
differs from the MATLABversion in that it does not draw the polygon edges.To draw edges, add line contours withcalls tocontour()
.
Call signatures:
contour(Z)
make a contour plot of an arrayZ. The level values are chosenautomatically.
contour(X,Y,Z)
X,Y specify the (x, y) coordinates of the surface
contour(Z,N)contour(X,Y,Z,N)
contour up toN automatically-chosen levels.
contour(Z,V)contour(X,Y,Z,V)
draw contour lines at the values specified in sequenceV,which must be in increasing order.
contourf(...,V)
fill thelen(V)-1
regions between the values inV,which must be in increasing order.
contour(Z,**kwargs)
Use keyword args to control colors, linewidth, origin, cmap ... seebelow for more details.
X andY must both be 2-D with the same shape asZ, or theymust both be 1-D such thatlen(X)
is the number of columns inZ andlen(Y)
is the number of rows inZ.
C=contour(...)
returns aQuadContourSet
object.
Optional keyword arguments:
- corner_mask: [True |False | ‘legacy’ ]
Enable/disable corner masking, which only has an effect ifZ isa masked array. IfFalse, any quad touching a masked point ismasked out. IfTrue, only the triangular corners of quadsnearest those points are always masked out, other triangularcorners comprising three unmasked points are contoured as usual.If ‘legacy’, the old contouring algorithm is used, which isequivalent toFalse and is deprecated, only remaining whilst thenew algorithm is tested fully.
If not specified, the default is taken fromrcParams[‘contour.corner_mask’], which is True unless it hasbeen modified.
- colors: [None | string | (mpl_colors) ]
IfNone, the colormap specified by cmap will be used.
If a string, like ‘r’ or ‘red’, all levels will be plotted in thiscolor.
If a tuple of matplotlib color args (string, float, rgb, etc),different levels will be plotted in different colors in the orderspecified.
- alpha: float
- The alpha blending value
- cmap: [None | Colormap ]
- A cm
Colormap
instance orNone. Ifcmap isNone andcolors isNone, adefault Colormap is used.- norm: [None | Normalize ]
- A
matplotlib.colors.Normalize
instance forscaling data values to colors. Ifnorm isNone andcolors isNone, the default linear scaling is used.- vmin,vmax: [None | scalar ]
- If notNone, either or both of these values will besupplied to the
matplotlib.colors.Normalize
instance, overriding the default color scaling based onlevels.- levels: [level0, level1, ..., leveln]
- A list of floating point numbers indicating the levelcurves to draw, in increasing order; e.g., to draw justthe zero contour pass
levels=[0]
- origin: [None | ‘upper’ | ‘lower’ | ‘image’ ]
IfNone, the first value ofZ will correspond to thelower left corner, location (0,0). If ‘image’, the rcvalue for
image.origin
will be used.This keyword is not active ifX andY are specified inthe call to contour.
extent: [None | (x0,x1,y0,y1) ]
Iforigin is notNone, thenextent is interpreted asin
matplotlib.pyplot.imshow()
: it gives the outerpixel boundaries. In this case, the position of Z[0,0]is the center of the pixel, not a corner. Iforigin isNone, then (x0,y0) is the position of Z[0,0], and(x1,y1) is the position of Z[-1,-1].This keyword is not active ifX andY are specified inthe call to contour.
- locator: [None | ticker.Locator subclass ]
- Iflocator isNone, the default
MaxNLocator
is used. Thelocator is used to determine the contour levels if theyare not given explicitly via theV argument.- extend: [ ‘neither’ | ‘both’ | ‘min’ | ‘max’ ]
- Unless this is ‘neither’, contour levels are automaticallyadded to one or both ends of the range so that all dataare included. These added ranges are then mapped to thespecial colormap values which default to the ends of thecolormap range, but can be set via
matplotlib.colors.Colormap.set_under()
andmatplotlib.colors.Colormap.set_over()
methods.- xunits,yunits: [None | registered units ]
- Override axis units by specifying an instance of a
matplotlib.units.ConversionInterface
.- antialiased: [True |False ]
- enable antialiasing, overriding the defaults. Forfilled contours, the default isTrue. For line contours,it is taken from rcParams[‘lines.antialiased’].
- nchunk: [ 0 | integer ]
- If 0, no subdivision of the domain. Specify a positive integer todivide the domain into subdomains ofnchunk bynchunk quads.Chunking reduces the maximum length of polygons generated by thecontouring algorithm which reduces the rendering workload passedon to the backend and also requires slightly less RAM. It canhowever introduce rendering artifacts at chunk boundaries dependingon the backend, theantialiased flag and value ofalpha.
contour-only keyword arguments:
- linewidths: [None | number | tuple of numbers ]
Iflinewidths isNone, the default width in
lines.linewidth
inmatplotlibrc
is used.If a number, all levels will be plotted with this linewidth.
If a tuple, different levels will be plotted with differentlinewidths in the order specified.
- linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’ ]
Iflinestyles isNone, the default is ‘solid’ unlessthe lines are monochrome. In that case, negativecontours will take their linestyle from the
matplotlibrc
contour.negative_linestyle
setting.linestyles can also be an iterable of the above stringsspecifying a set of linestyles to be used. If thisiterable is shorter than the number of contour levelsit will be repeated as necessary.
contourf-only keyword arguments:
- hatches:
- A list of cross hatch patterns to use on the filled areas.If None, no hatching will be added to the contour.Hatching is supported in the PostScript, PDF, SVG and Aggbackends only.
Note: contourf fills intervals that are closed at the top; thatis, for boundariesz1 andz2, the filled region is:
z1<z<=z2
There is one exception: if the lowest boundary coincides withthe minimum value of thez array, then that minimum valuewill be included in the lowest interval.
Examples:
matplotlib.pyplot.
cool
()¶set the default colormap to cool and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
copper
()¶set the default colormap to copper and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
csd
(x,y,NFFT=None,Fs=None,Fc=None,detrend=None,window=None,noverlap=None,pad_to=None,sides=None,scale_by_freq=None,return_line=None,hold=None,data=None,**kwargs)¶Plot the cross-spectral density.
Call signature:
csd(x,y,NFFT=256,Fs=2,Fc=0,detrend=mlab.detrend_none,window=mlab.window_hanning,noverlap=0,pad_to=None,sides='default',scale_by_freq=None,return_line=None,**kwargs)
The cross spectral density by Welch’s averageperiodogram method. The vectorsx andy are divided intoNFFT length segments. Each segment is detrended by functiondetrend and windowed by functionwindow.noverlap givesthe length of the overlap between segments. The product ofthe direct FFTs ofx andy are averaged over each segmentto compute
, with a scaling to correct for powerloss due to windowing.
If len(x) <NFFT or len(y) <NFFT, they will be zeropadded toNFFT.
Parameters: | x, y : 1-D arrays or sequences
Fs : scalar
window : callable or ndarray
sides : [ ‘default’ | ‘onesided’ | ‘twosided’ ]
pad_to : integer
NFFT : integer
detrend : {‘default’, ‘constant’, ‘mean’, ‘linear’, ‘none’} or callable
scale_by_freq : boolean, optional
noverlap : integer
Fc : integer
return_line : bool
**kwargs :
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Returns: | Pxy : 1-D array
freqs : 1-D array
line : a
|
See also
Notes
For plotting, the power is plotted as for decibels, though
P_{xy}
itselfis returned.
References
Bendat & Piersol – Random Data: Analysis and Measurement Procedures,John Wiley & Sons (1986)
Examples
matplotlib.pyplot.
delaxes
(*args)¶Remove an axes from the current figure. Ifaxdoesn’t exist, an error will be raised.
delaxes()
: delete the current axes
matplotlib.pyplot.
disconnect
(cid)¶Disconnect callback id cid
Example usage:
cid=canvas.mpl_connect('button_press_event',on_press)#...latercanvas.mpl_disconnect(cid)
matplotlib.pyplot.
draw
()¶Redraw the current figure.
This is used to update a figure that has been altered, but notautomatically re-drawn. If interactive mode is on (ion()
), thisshould be only rarely needed, but there may be ways to modify the state ofa figure without marking it asstale
. Please report these cases asbugs.
A more object-oriented alternative, given anyFigure
instance,fig
, thatwas created using apyplot
function, is:
fig.canvas.draw_idle()
matplotlib.pyplot.
errorbar
(x,y,yerr=None,xerr=None,fmt='',ecolor=None,elinewidth=None,capsize=None,barsabove=False,lolims=False,uplims=False,xlolims=False,xuplims=False,errorevery=1,capthick=None,hold=None,data=None,**kwargs)¶Plot an errorbar graph.
Plot x versus y with error deltas in yerr and xerr.Vertical errorbars are plotted if yerr is not None.Horizontal errorbars are plotted if xerr is not None.
x, y, xerr, and yerr can all be scalars, which plots asingle error bar at x, y.
Parameters: | x : scalar or array-like y : scalar or array-like xerr/yerr : scalar or array-like, shape(N,) or shape(2,N), optional
fmt : plot format string, optional, default: None
ecolor : mpl color, optional, default: None
elinewidth : scalar, optional, default: None
capsize : scalar, optional, default: None
capthick : scalar, optional, default: None
barsabove : bool, optional, default: False
lolims / uplims / xlolims / xuplims : bool, optional, default:None
errorevery : positive integer, optional, default:1
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Returns: | plotline :
caplines : list of
barlinecols : list of
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other Parameters: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
kwargs : All other keyword arguments are passed on to the plot
|
Examples
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
eventplot
(positions,orientation='horizontal',lineoffsets=1,linelengths=1,linewidths=None,colors=None,linestyles='solid',hold=None,data=None,**kwargs)¶Plot identical parallel lines at specific positions.
Plot parallel lines at the given positions. positions should be a 1Dor 2D array-like object, with each row corresponding to a row or columnof lines.
This type of plot is commonly used in neuroscience for representingneural events, where it is commonly called a spike raster, dot raster,or raster plot.
However, it is useful in any situation where you wish to show thetiming or position of multiple sets of discrete events, such as thearrival times of people to a business on each day of the month or thedate of hurricanes each year of the last century.
For linelengths, linewidths, colors, and linestyles, if only a singlevalue is given, that value is applied to all lines. If an array-likeis given, it must have the same length as positions, and each valuewill be applied to the corresponding row or column in positions.
Returns a list ofmatplotlib.collections.EventCollection
objects that were added.
kwargs areLineCollection
properties:
Property Description agg_filter
unknown alpha
float or None animated
[True | False] antialiased
or antialiasedsBoolean or sequence of booleans array
unknown axes
an Axes
instanceclim
a length 2 sequence of floats clip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]cmap
a colormap or registered colormap name color
matplotlib color arg or sequence of rgba tuples contains
a callable function edgecolor
or edgecolorsmatplotlib color spec or sequence of specs facecolor
or facecolorsmatplotlib color spec or sequence of specs figure
a matplotlib.figure.Figure
instancegid
an id string hatch
[ ‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’ ] label
string or anything printable with ‘%s’ conversion. linestyle
or dashes or linestyles[‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | '-'
|'--'
|'-.'
|':'
|'None'
|''
|''
]linewidth
or linewidths or lwfloat or sequence of floats norm
unknown offset_position
unknown offsets
float or sequence of floats path_effects
unknown paths
unknown picker
[None|float|boolean|callable] pickradius
unknown rasterized
[True | False | None] segments
unknown sketch_params
unknown snap
unknown transform
Transform
instanceurl
a url string urls
unknown verts
unknown visible
[True | False] zorder
any number
Example:
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
figimage
(*args,**kwargs)¶Adds a non-resampled image to the figure.
call signatures:
figimage(X,**kwargs)
adds a non-resampled arrayX to the figure.
figimage(X,xo,yo)
with pixel offsetsxo,yo,
X must be a float array:
Optional keyword arguments:
Keyword Description resize a boolean, True or False. If “True”, then re-size theFigure to match the given image size. xo or yo An integer, thex andy image offset in pixels cmap a matplotlib.colors.Colormap
instance, e.g.,cm.jet. IfNone, default to the rcimage.cmap
valuenorm a matplotlib.colors.Normalize
instance. Thedefault is normalization(). This scales luminance -> 0-1vmin|vmax are used to scale a luminance image to 0-1. If eitherisNone, the min and max of the luminance values willbe used. Note if you pass a norm instance, the settingsforvmin andvmax will be ignored. alpha the alpha blending value, default isNone origin [ ‘upper’ | ‘lower’ ] Indicates where the [0,0] index ofthe array is in the upper left or lower left corner ofthe axes. Defaults to the rc image.origin value
figimage complements the axes image(imshow()
) which will be resampledto fit the current axes. If you want a resampled image tofill the entire figure, you can define anAxes
with extent [0,0,1,1].
Anmatplotlib.image.FigureImage
instance is returned.
Additional kwargs are Artist kwargs passed on toFigureImage
matplotlib.pyplot.
figlegend
(handles,labels,loc,**kwargs)¶Place a legend in the figure.
Line2D
orPatch
instancesAmatplotlib.legend.Legend
instance is returned.
Example:
figlegend((line1,line2,line3),('label1','label2','label3'),'upper right')
See also
matplotlib.pyplot.
fignum_exists
(num)¶matplotlib.pyplot.
figtext
(*args,**kwargs)¶Add text to figure.
Call signature:
text(x,y,s,fontdict=None,**kwargs)
Add text to figure at locationx,y (relative 0-1coords). Seetext()
for the meaningof the other arguments.
kwargs control theText
properties:
Property Description agg_filter
unknown alpha
float (0.0 transparent through 1.0 opaque) animated
[True | False] axes
an Axes
instancebackgroundcolor
any matplotlib color bbox
FancyBboxPatch prop dict clip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]color
any matplotlib color contains
a callable function family
or fontfamily or fontname or name[FONTNAME | ‘serif’ | ‘sans-serif’ | ‘cursive’ | ‘fantasy’ | ‘monospace’ ] figure
a matplotlib.figure.Figure
instancefontproperties
or font_propertiesa matplotlib.font_manager.FontProperties
instancegid
an id string horizontalalignment
or ha[ ‘center’ | ‘right’ | ‘left’ ] label
string or anything printable with ‘%s’ conversion. linespacing
float (multiple of font size) multialignment
[‘left’ | ‘right’ | ‘center’ ] path_effects
unknown picker
[None|float|boolean|callable] position
(x,y) rasterized
[True | False | None] rotation
[ angle in degrees | ‘vertical’ | ‘horizontal’ ] rotation_mode
unknown size
or fontsize[size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-large’ | ‘xx-large’ ] sketch_params
unknown snap
unknown stretch
or fontstretch[a numeric value in range 0-1000 | ‘ultra-condensed’ | ‘extra-condensed’ | ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’ | ‘extra-expanded’ | ‘ultra-expanded’ ] style
or fontstyle[ ‘normal’ | ‘italic’ | ‘oblique’] text
string or anything printable with ‘%s’ conversion. transform
Transform
instanceurl
a url string usetex
unknown variant
or fontvariant[ ‘normal’ | ‘small-caps’ ] verticalalignment
or ma or va[ ‘center’ | ‘top’ | ‘bottom’ | ‘baseline’ ] visible
[True | False] weight
or fontweight[a numeric value in range 0-1000 | ‘ultralight’ | ‘light’ | ‘normal’ | ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ | ‘bold’ | ‘heavy’ | ‘extra bold’ | ‘black’ ] wrap
unknown x
float y
float zorder
any number
matplotlib.pyplot.
figure
(num=None,figsize=None,dpi=None,facecolor=None,edgecolor=None,frameon=True,FigureClass=<class 'matplotlib.figure.Figure'>,**kwargs)¶Creates a new figure.
Parameters: | num : integer or string, optional, default: none
figsize : tuple of integers, optional, default: None
dpi : integer, optional, default: None
facecolor :
edgecolor :
|
---|---|
Returns: | figure : Figure
|
Notes
If you are creating many figures, make sure you explicitly call “close”on the figures you are not using, because this will enable pylabto properly clean up the memory.
rcParams defines the default values, which can be modified in thematplotlibrc file
matplotlib.pyplot.
fill
(*args,**kwargs)¶Plot filled polygons.
Parameters: | args : a variable length argument
|
---|---|
Returns: | a list of |
Other Parameters: | |
kwargs : |
Notes
The same color strings thatplot()
supports are supported by the fill format string.
If you would like to fill below a curve, e.g., shade a regionbetween 0 andy alongx, usefill_between()
Examples
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
fill_between
(x,y1,y2=0,where=None,interpolate=False,step=None,hold=None,data=None,**kwargs)¶Make filled polygons between two curves.
Create aPolyCollection
filling the regions betweeny1 andy2 wherewhere==True
Parameters: | x : array
y1 : array
y2 : array
where : array, optional
interpolate : bool, optional
step : {‘pre’, ‘post’, ‘mid’}, optional
|
---|
See also
Notes
Additional Keyword args passed on to thePolyCollection
.
kwargs control thePolygon
properties:
Property Description agg_filter
unknown alpha
float or None animated
[True | False] antialiased
or antialiasedsBoolean or sequence of booleans array
unknown axes
an Axes
instanceclim
a length 2 sequence of floats clip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]cmap
a colormap or registered colormap name color
matplotlib color arg or sequence of rgba tuples contains
a callable function edgecolor
or edgecolorsmatplotlib color spec or sequence of specs facecolor
or facecolorsmatplotlib color spec or sequence of specs figure
a matplotlib.figure.Figure
instancegid
an id string hatch
[ ‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’ ] label
string or anything printable with ‘%s’ conversion. linestyle
or dashes or linestyles[‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | '-'
|'--'
|'-.'
|':'
|'None'
|''
|''
]linewidth
or linewidths or lwfloat or sequence of floats norm
unknown offset_position
unknown offsets
float or sequence of floats path_effects
unknown picker
[None|float|boolean|callable] pickradius
unknown rasterized
[True | False | None] sketch_params
unknown snap
unknown transform
Transform
instanceurl
a url string urls
unknown visible
[True | False] zorder
any number
Examples
matplotlib.pyplot.
fill_betweenx
(y,x1,x2=0,where=None,step=None,hold=None,data=None,**kwargs)¶Make filled polygons between two horizontal curves.
Create aPolyCollection
filling the regions betweenx1 andx2 wherewhere==True
Parameters: | y : array
x1 : array
x2 : array, optional
where : array, optional
step : {‘pre’, ‘post’, ‘mid’}, optional
|
---|
See also
Notes
PolyCollection
kwargs control thePolygon
properties:
Property Description agg_filter
unknown alpha
float or None animated
[True | False] antialiased
or antialiasedsBoolean or sequence of booleans array
unknown axes
an Axes
instanceclim
a length 2 sequence of floats clip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]cmap
a colormap or registered colormap name color
matplotlib color arg or sequence of rgba tuples contains
a callable function edgecolor
or edgecolorsmatplotlib color spec or sequence of specs facecolor
or facecolorsmatplotlib color spec or sequence of specs figure
a matplotlib.figure.Figure
instancegid
an id string hatch
[ ‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’ ] label
string or anything printable with ‘%s’ conversion. linestyle
or dashes or linestyles[‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | '-'
|'--'
|'-.'
|':'
|'None'
|''
|''
]linewidth
or linewidths or lwfloat or sequence of floats norm
unknown offset_position
unknown offsets
float or sequence of floats path_effects
unknown picker
[None|float|boolean|callable] pickradius
unknown rasterized
[True | False | None] sketch_params
unknown snap
unknown transform
Transform
instanceurl
a url string urls
unknown visible
[True | False] zorder
any number
Examples
matplotlib.pyplot.
findobj
(o=None,match=None,include_self=True)¶Find artist objects.
Recursively find allArtist
instancescontained in self.
match can be
- None: return all objects contained in artist.
- function with signature
boolean=match(artist)
used to filter matches- class instance: e.g., Line2D. Only return artists of class type.
Ifinclude_self is True (default), include self in the list to bechecked for a match.
matplotlib.pyplot.
flag
()¶set the default colormap to flag and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
gca
(**kwargs)¶Get the currentAxes
instance on thecurrent figure matching the given keyword args, or create one.
See also
matplotlib.figure.Figure.gca
Examples
To get the current polar axes on the current figure:
plt.gca(projection='polar')
If the current axes doesn’t exist, or isn’t a polar one, the appropriateaxes will be created and then returned.
matplotlib.pyplot.
gcf
()¶Get a reference to the current figure.
matplotlib.pyplot.
gci
()¶Get the current colorable artist. Specifically, returns thecurrentScalarMappable
instance (image orpatch collection), orNone if no images or patch collectionshave been defined. The commandsimshow()
andfigimage()
createImage
instances, and the commandspcolor()
andscatter()
createCollection
instances. Thecurrent image is an attribute of the current axes, or the nearestearlier axes in the current figure that contains an image.
matplotlib.pyplot.
get_current_fig_manager
()¶matplotlib.pyplot.
get_figlabels
()¶Return a list of existing figure labels.
matplotlib.pyplot.
get_fignums
()¶Return a list of existing figure numbers.
matplotlib.pyplot.
get_plot_commands
()¶Get a sorted list of all of the plotting commands.
matplotlib.pyplot.
ginput
(*args,**kwargs)¶Blocking call to interact with the figure.
This will wait forn clicks from the user and return a list of thecoordinates of each click.
Iftimeout is zero or negative, does not timeout.
Ifn is zero or negative, accumulate clicks until a middle click(or potentially both mouse buttons at once) terminates the input.
Right clicking cancels last input.
The buttons used for the various actions (adding points, removingpoints, terminating the inputs) can be overriden via theargumentsmouse_add,mouse_pop andmouse_stop, that givethe associated mouse button: 1 for left, 2 for middle, 3 forright.
The keyboard can also be used to select points in case your mousedoes not have one or more of the buttons. The delete and backspacekeys act like right clicking (i.e., remove last point), the enter keyterminates input and any other key (not already used by the windowmanager) selects a point.
matplotlib.pyplot.
gray
()¶set the default colormap to gray and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
grid
(b=None,which='major',axis='both',**kwargs)¶Turn the axes grids on or off.
Set the axes grids on or off;b is a boolean. (For MATLABcompatibility,b may also be a string, ‘on’ or ‘off’.)
Ifb isNone andlen(kwargs)==0
, toggle the grid state. Ifkwargs are supplied, it is assumed that you want a grid andbis thus set toTrue.
which can be ‘major’ (default), ‘minor’, or ‘both’ to controlwhether major tick grids, minor tick grids, or both are affected.
axis can be ‘both’ (default), ‘x’, or ‘y’ to control whichset of gridlines are drawn.
kwargs are used to set the grid line properties, e.g.,:
ax.grid(color='r',linestyle='-',linewidth=2)
ValidLine2D
kwargs are
Property Description agg_filter
unknown alpha
float (0.0 transparent through 1.0 opaque) animated
[True | False] antialiased
or aa[True | False] axes
an Axes
instanceclip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]color
or cany matplotlib color contains
a callable function dash_capstyle
[‘butt’ | ‘round’ | ‘projecting’] dash_joinstyle
[‘miter’ | ‘round’ | ‘bevel’] dashes
sequence of on/off ink in points drawstyle
[‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’] figure
a matplotlib.figure.Figure
instancefillstyle
[‘full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’] gid
an id string label
string or anything printable with ‘%s’ conversion. linestyle
or ls[‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | '-'
|'--'
|'-.'
|':'
|'None'
|''
|''
]linewidth
or lwfloat value in points marker
Avalidmarkerstyle
markeredgecolor
or mecany matplotlib color markeredgewidth
or mewfloat value in points markerfacecolor
or mfcany matplotlib color markerfacecoloralt
or mfcaltany matplotlib color markersize
or msfloat markevery
[None | int | length-2 tuple of int | slice | list/array of int | float | length-2 tuple of float] path_effects
unknown picker
float distance in points or callable pick function fn(artist,event)
pickradius
float distance in points rasterized
[True | False | None] sketch_params
unknown snap
unknown solid_capstyle
[‘butt’ | ‘round’ | ‘projecting’] solid_joinstyle
[‘miter’ | ‘round’ | ‘bevel’] transform
a matplotlib.transforms.Transform
instanceurl
a url string visible
[True | False] xdata
1D array ydata
1D array zorder
any number
matplotlib.pyplot.
hexbin
(x,y,C=None,gridsize=100,bins=None,xscale='linear',yscale='linear',extent=None,cmap=None,norm=None,vmin=None,vmax=None,alpha=None,linewidths=None,edgecolors='none',reduce_C_function=<function mean>,mincnt=None,marginals=False,hold=None,data=None,**kwargs)¶Make a hexagonal binning plot.
Make a hexagonal binning plot ofx versusy, wherex,y are 1-D sequences of the same length,N. IfC isNone(the default), this is a histogram of the number of occurencesof the observations at (x[i],y[i]).
IfC is specified, it specifies values at the coordinate(x[i],y[i]). These values are accumulated for each hexagonalbin and then reduced according toreduce_C_function, whichdefaults to numpy’s mean function (np.mean). (IfC isspecified, it must also be a 1-D sequence of the same lengthasx andy.)
Parameters: | x, y : array or masked array C : array or masked array, optional, default isNone gridsize : int or (int, int), optional, default is 100
bins : {‘log’} or int or sequence, optional, default isNone
xscale : {‘linear’, ‘log’}, optional, default is ‘linear’
yscale : {‘linear’, ‘log’}, optional, default is ‘linear’
mincnt : int > 0, optional, default isNone
marginals : bool, optional, default isFalse
extent : scalar, optional, default isNone
|
---|---|
Returns: | object
|
Other Parameters: | |
cmap : object, optional, default isNone
norm : object, optional, default isNone
vmin, vmax : scalar, optional, default isNone
alpha : scalar between 0 and 1, optional, default isNone
linewidths : scalar, optional, default isNone
edgecolors : {‘none’} or mpl color, optional, default is ‘none’
|
Notes
The standard descriptions of all theCollection
parameters:
Property Description agg_filter
unknown alpha
float or None animated
[True | False] antialiased
or antialiasedsBoolean or sequence of booleans array
unknown axes
an Axes
instanceclim
a length 2 sequence of floats clip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]cmap
a colormap or registered colormap name color
matplotlib color arg or sequence of rgba tuples contains
a callable function edgecolor
or edgecolorsmatplotlib color spec or sequence of specs facecolor
or facecolorsmatplotlib color spec or sequence of specs figure
a matplotlib.figure.Figure
instancegid
an id string hatch
[ ‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’ ] label
string or anything printable with ‘%s’ conversion. linestyle
or dashes or linestyles[‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | '-'
|'--'
|'-.'
|':'
|'None'
|''
|''
]linewidth
or linewidths or lwfloat or sequence of floats norm
unknown offset_position
unknown offsets
float or sequence of floats path_effects
unknown picker
[None|float|boolean|callable] pickradius
unknown rasterized
[True | False | None] sketch_params
unknown snap
unknown transform
Transform
instanceurl
a url string urls
unknown visible
[True | False] zorder
any number
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
Examples
matplotlib.pyplot.
hist
(x,bins=None,range=None,normed=False,weights=None,cumulative=False,bottom=None,histtype='bar',align='mid',orientation='vertical',rwidth=None,log=False,color=None,label=None,stacked=False,hold=None,data=None,**kwargs)¶Plot a histogram.
Compute and draw the histogram ofx. The return value is atuple (n,bins,patches) or ([n0,n1, ...],bins,[patches0,patches1,...]) if the input contains multipledata.
Multiple data can be provided viax as a list of datasetsof potentially different length ([x0,x1, ...]), or asa 2-D ndarray in which each column is a dataset. Note thatthe ndarray form is transposed relative to the list form.
Masked arrays are not supported at present.
Parameters: | x : (n,) array or sequence of (n,) arrays
bins : integer or array_like or ‘auto’, optional
range : tuple or None, optional
normed : boolean, optional
weights : (n, ) array_like or None, optional
cumulative : boolean, optional
bottom : array_like, scalar, or None
histtype : {‘bar’, ‘barstacked’, ‘step’, ‘stepfilled’}, optional
align : {‘left’, ‘mid’, ‘right’}, optional
orientation : {‘horizontal’, ‘vertical’}, optional
rwidth : scalar or None, optional
log : boolean, optional
color : color or array_like of colors or None, optional
label : string or None, optional
stacked : boolean, optional
|
---|---|
Returns: | n : array or list of arrays
bins : array
patches : list or list of lists
|
Other Parameters: | |
kwargs : |
See also
hist2d
Notes
Until numpy release 1.5, the underlying numpy histogram function wasincorrect withnormed`=`True
if bin sizes were unequal. MPLinherited that error. It is now corrected within MPL when usingearlier numpy versions.
Examples
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
hist2d
(x,y,bins=10,range=None,normed=False,weights=None,cmin=None,cmax=None,hold=None,data=None,**kwargs)¶Make a 2D histogram plot.
Parameters: | x, y: array_like, shape (n, )
bins: [None | int | [int, int] | array_like | [array, array]]
range : array_like shape(2, 2), optional, default: None
normed : boolean, optional, default: False
weights : array_like, shape (n, ), optional, default: None
cmin : scalar, optional, default: None
cmax : scalar, optional, default: None
|
---|---|
Returns: | The return value is |
Other Parameters: | |
cmap : {Colormap, string}, optional
norm : Normalize, optional
vmin/vmax : {None, scalar}, optional
alpha :
|
See also
hist
Notes
Rendering the histogram with a logarithmic color scale isaccomplished by passing acolors.LogNorm
instance tothenorm keyword argument. Likewise, power-law normalization(similar in effect to gamma correction) can be accomplished withcolors.PowerNorm
.
Examples
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
hlines
(y,xmin,xmax,colors='k',linestyles='solid',label='',hold=None,data=None,**kwargs)¶Plot horizontal lines at eachy
fromxmin
toxmax
.
Parameters: | y : scalar or sequence of scalar
xmin, xmax : scalar or 1D array_like
colors : array_like of colors, optional, default: ‘k’ linestyles : [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’], optional label : string, optional, default: ‘’ |
---|---|
Returns: | lines : |
Other Parameters: | |
kwargs : |
See also
vlines
Examples
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
hold
(b=None)¶Deprecated since version 2.0:pyplot.hold is deprecated.Future behavior will be consistent with the long-time default:plot commands add elements without first clearing theAxes and/or Figure.
Set the hold state. Ifb is None (default), toggle thehold state, else set the hold state to boolean valueb:
hold()# toggle holdhold(True)# hold is onhold(False)# hold is off
Whenhold isTrue, subsequent plot commands will add elements tothe current axes. Whenhold isFalse, the current axes andfigure will be cleared on the next plot command.
matplotlib.pyplot.
hot
()¶set the default colormap to hot and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
hsv
()¶set the default colormap to hsv and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
imread
(*args,**kwargs)¶Read an image from a file into an array.
fname may be a string path, a valid URL, or a Pythonfile-like object. If using a file object, it must be opened in binarymode.
Ifformat is provided, will try to read file of that type,otherwise the format is deduced from the filename. If nothing canbe deduced, PNG is tried.
Return value is anumpy.array
. For grayscale images, thereturn array is MxN. For RGB images, the return value is MxNx3.For RGBA images the return value is MxNx4.
matplotlib can only read PNGs natively, but ifPIL is installed, it willuse it to load the image and return an array (if possible) whichcan be used withimshow()
. Note, URL stringsmay not be compatible with PIL. Check the PIL documentation for moreinformation.
matplotlib.pyplot.
imsave
(*args,**kwargs)¶Save an array as in image file.
The output formats available depend on the backend being used.
matplotlib.pyplot.
imshow
(X,cmap=None,norm=None,aspect=None,interpolation=None,alpha=None,vmin=None,vmax=None,origin=None,extent=None,shape=None,filternorm=1,filterrad=4.0,imlim=None,resample=None,url=None,hold=None,data=None,**kwargs)¶Display an image on the axes.
Parameters: | X : array_like, shape (n, m) or (n, m, 3) or (n, m, 4)
cmap :
aspect : [‘auto’ | ‘equal’ | scalar], optional, default: None
interpolation : string, optional, default: None
norm : vmin, vmax : scalar, optional, default: None
alpha : scalar, optional, default: None
origin : [‘upper’ | ‘lower’], optional, default: None
extent : scalars (left, right, bottom, top), optional, default: None
shape : scalars (columns, rows), optional, default: None
filternorm : scalar, optional, default: 1
filterrad : scalar, optional, default: 4.0
|
---|---|
Returns: | image : |
Other Parameters: | |
kwargs : |
See also
matshow
Notes
Unlessextent is used, pixel centers will be located at integercoordinates. In other words: the origin will coincide with the centerof pixel (0, 0).
Examples
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
inferno
()¶set the default colormap to inferno and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
install_repl_displayhook
()¶Install a repl display hook so that any stale figure are automaticallyredrawn when control is returned to the repl.
This works with IPython terminals and kernels,as well as vanilla python shells.
matplotlib.pyplot.
ioff
()¶Turn interactive mode off.
matplotlib.pyplot.
ion
()¶Turn interactive mode on.
matplotlib.pyplot.
ishold
()¶Deprecated since version 2.0:pyplot.hold is deprecated.Future behavior will be consistent with the long-time default:plot commands add elements without first clearing theAxes and/or Figure.
Return the hold status of the current axes.
matplotlib.pyplot.
isinteractive
()¶Return status of interactive mode.
matplotlib.pyplot.
jet
()¶set the default colormap to jet and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
legend
(*args,**kwargs)¶Places a legend on the axes.
To make a legend for lines which already exist on the axes(via plot for instance), simply call this function with an iterableof strings, one for each legend item. For example:
ax.plot([1,2,3])ax.legend(['A simple line'])
However, in order to keep the “label” and the legend elementinstance together, it is preferable to specify the label either atartist creation, or by calling theset_label()
method on the artist:
line,=ax.plot([1,2,3],label='Inline label')# Overwrite the label by calling the method.line.set_label('Label via method')ax.legend()
Specific lines can be excluded from the automatic legend elementselection by defining a label starting with an underscore.This is default for all artists, so callinglegend()
withoutany arguments and without setting the labels manually will result inno legend being drawn.
For full control of which artists have a legend entry, it is possibleto pass an iterable of legend artists followed by an iterable oflegend labels respectively:
legend((line1,line2,line3),('label1','label2','label3'))
Parameters: | loc : int or string or pair of floats, default: ‘upper right’
bbox_to_anchor :
ncol : integer
prop : None or
fontsize : int or float or {‘xx-small’, ‘x-small’, ‘small’, ‘medium’, ‘large’, ‘x-large’, ‘xx-large’}
numpoints : None or int
scatterpoints : None or int
scatteryoffsets : iterable of floats
markerscale : None or int or float
markerfirst : bool
frameon : None or bool
fancybox : None or bool
shadow : None or bool
framealpha : None or float
facecolor : None or “inherit” or a color spec edgecolor : None or “inherit” or a color spec mode : {“expand”, None}
bbox_transform : None or
title : str or None
borderpad : float or None
labelspacing : float or None
handlelength : float or None
handletextpad : float or None
borderaxespad : float or None
columnspacing : float or None
handler_map : dict or None
|
---|
Notes
Not all kinds of artist are supported by the legend command.SeeLegend guide for details.
Examples
matplotlib.pyplot.
locator_params
(axis='both',tight=None,**kwargs)¶Control behavior of tick locators.
Keyword arguments:
autoscale_view()
.Default is None, for no change.Remaining keyword arguments are passed to directly to theset_params()
method.
Typically one might want to reduce the maximum numberof ticks and use tight bounds when plotting smallsubplots, for example:
ax.locator_params(tight=True,nbins=4)
Because the locator is involved in autoscaling,autoscale_view()
is called automatically afterthe parameters are changed.
This presently works only for theMaxNLocator
usedby default on linear axes, but it may be generalized.
matplotlib.pyplot.
loglog
(*args,**kwargs)¶Make a plot with log scaling on both thex andy axis.
loglog()
supports all the keywordarguments ofplot()
andmatplotlib.axes.Axes.set_xscale()
/matplotlib.axes.Axes.set_yscale()
.
Notable keyword arguments:
- basex/basey: scalar > 1
- Base of thex/y logarithm
- subsx/subsy: [None | sequence ]
- The location of the minorx/y ticks;None defaultsto autosubs, which depend on the number of decades in theplot; see
matplotlib.axes.Axes.set_xscale()
/matplotlib.axes.Axes.set_yscale()
for details- nonposx/nonposy: [‘mask’ | ‘clip’ ]
- Non-positive values inx ory can be masked asinvalid, or clipped to a very small positive number
The remaining valid kwargs areLine2D
properties:
Property Description agg_filter
unknown alpha
float (0.0 transparent through 1.0 opaque) animated
[True | False] antialiased
or aa[True | False] axes
an Axes
instanceclip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]color
or cany matplotlib color contains
a callable function dash_capstyle
[‘butt’ | ‘round’ | ‘projecting’] dash_joinstyle
[‘miter’ | ‘round’ | ‘bevel’] dashes
sequence of on/off ink in points drawstyle
[‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’] figure
a matplotlib.figure.Figure
instancefillstyle
[‘full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’] gid
an id string label
string or anything printable with ‘%s’ conversion. linestyle
or ls[‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | '-'
|'--'
|'-.'
|':'
|'None'
|''
|''
]linewidth
or lwfloat value in points marker
Avalidmarkerstyle
markeredgecolor
or mecany matplotlib color markeredgewidth
or mewfloat value in points markerfacecolor
or mfcany matplotlib color markerfacecoloralt
or mfcaltany matplotlib color markersize
or msfloat markevery
[None | int | length-2 tuple of int | slice | list/array of int | float | length-2 tuple of float] path_effects
unknown picker
float distance in points or callable pick function fn(artist,event)
pickradius
float distance in points rasterized
[True | False | None] sketch_params
unknown snap
unknown solid_capstyle
[‘butt’ | ‘round’ | ‘projecting’] solid_joinstyle
[‘miter’ | ‘round’ | ‘bevel’] transform
a matplotlib.transforms.Transform
instanceurl
a url string visible
[True | False] xdata
1D array ydata
1D array zorder
any number
Example:
matplotlib.pyplot.
magma
()¶set the default colormap to magma and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
magnitude_spectrum
(x,Fs=None,Fc=None,window=None,pad_to=None,sides=None,scale=None,hold=None,data=None,**kwargs)¶Plot the magnitude spectrum.
Call signature:
magnitude_spectrum(x,Fs=2,Fc=0,window=mlab.window_hanning,pad_to=None,sides='default',**kwargs)
Compute the magnitude spectrum ofx. Data is padded to alength ofpad_to and the windowing functionwindow is applied tothe signal.
Parameters: | x : 1-D array or sequence
Fs : scalar
window : callable or ndarray
sides : [ ‘default’ | ‘onesided’ | ‘twosided’ ]
pad_to : integer
scale : [ ‘default’ | ‘linear’ | ‘dB’ ]
Fc : integer
**kwargs :
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Returns: | spectrum : 1-D array
freqs : 1-D array
line : a
|
See also
psd()
psd()
plots the power spectral density.`.angle_spectrum()
angle_spectrum()
plots the angles of the corresponding frequencies.phase_spectrum()
phase_spectrum()
plots the phase (unwrapped angle) of the corresponding frequencies.specgram()
specgram()
can plot the magnitude spectrum of segments within the signal in a colormap.
Examples
matplotlib.pyplot.
margins
(*args,**kw)¶Set or retrieve autoscaling margins.
signatures:
margins()
returns xmargin, ymargin
margins(margin)margins(xmargin,ymargin)margins(x=xmargin,y=ymargin)margins(...,tight=False)
All three forms above set the xmargin and ymargin parameters.All keyword parameters are optional. A single argumentspecifies both xmargin and ymargin. Thetight parameteris passed toautoscale_view()
, which is executed aftera margin is changed; the default here isTrue, on theassumption that when margins are specified, no additionalpadding to match tick marks is usually desired. Settingtight toNone will preserve the previous setting.
Specifying any margin changes only the autoscaling; for example,ifxmargin is not None, thenxmargin times the X datainterval will be added to each end of that interval beforeit is used in autoscaling.
matplotlib.pyplot.
matshow
(A,fignum=None,**kw)¶Display an array as a matrix in a new figure window.
The origin is set at the upper left hand corner and rows (firstdimension of the array) are displayed horizontally. The aspectratio of the figure window is that of the array, unless this wouldmake an excessively short or narrow figure.
Tick labels for the xaxis are placed on top.
With the exception offignum, keyword arguments are passed toimshow()
. You may set theoriginkwarg to “lower” if you want the first row in the array to beat the bottom instead of the top.
By default,matshow()
creates a new figure window withautomatic numbering. Iffignum is given as an integer, thecreated figure will use this figure number. Because of howmatshow()
tries to set the figure aspect ratio to be theone of the array, if you provide the number of an alreadyexisting figure, strange things may happen.
Iffignum isFalse or 0, a new figure window willNOT be created.
matplotlib.pyplot.
minorticks_off
()¶Remove minor ticks from the current plot.
matplotlib.pyplot.
minorticks_on
()¶Display minor ticks on the current plot.
Displaying minor ticks reduces performance; turn them off usingminorticks_off() if drawing speed is a problem.
matplotlib.pyplot.
nipy_spectral
()¶set the default colormap to nipy_spectral and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
over
(func,*args,**kwargs)¶Deprecated since version 2.0:pyplot.hold is deprecated.Future behavior will be consistent with the long-time default:plot commands add elements without first clearing theAxes and/or Figure.
Call a function with hold(True).
Calls:
func(*args,**kwargs)
withhold(True)
and then restores the hold state.
matplotlib.pyplot.
pause
(interval)¶Pause forinterval seconds.
If there is an active figure it will be updated and displayed,and the GUI event loop will run during the pause.
If there is no active figure, or if a non-interactive backendis in use, this executes time.sleep(interval).
This can be used for crude animation. For more complexanimation, seematplotlib.animation
.
This function is experimental; its behavior may be changedor extended in a future release.
matplotlib.pyplot.
pcolor
(*args,**kwargs)¶Create a pseudocolor plot of a 2-D array.
Note
pcolor can be very slow for large arrays; considerusing the similar but much fasterpcolormesh()
instead.
Call signatures:
pcolor(C,**kwargs)pcolor(X,Y,C,**kwargs)
C is the array of color values.
X andY, if given, specify the (x,y) coordinates ofthe colored quadrilaterals; the quadrilateral for C[i,j] hascorners at:
(X[i,j],Y[i,j]),(X[i,j+1],Y[i,j+1]),(X[i+1,j],Y[i+1,j]),(X[i+1,j+1],Y[i+1,j+1]).
Ideally the dimensions ofX andY should be one greaterthan those ofC; if the dimensions are the same, then thelast row and column ofC will be ignored.
Note that the column index corresponds to thex-coordinate, and the row index corresponds toy; fordetails, see theGrid Orientation section below.
If either or both ofX andY are 1-D arrays or column vectors,they will be expanded as needed into the appropriate 2-D arrays,making a rectangular grid.
X,Y andC may be masked arrays. If either C[i, j], or oneof the vertices surrounding C[i,j] (X orY at [i, j], [i+1, j],[i, j+1],[i+1, j+1]) is masked, nothing is plotted.
Keyword arguments:
- cmap: [None | Colormap ]
- A
matplotlib.colors.Colormap
instance. IfNone, userc settings.- norm: [None | Normalize ]
- An
matplotlib.colors.Normalize
instance is usedto scale luminance data to 0,1. IfNone, defaults tonormalize()
.- vmin/vmax: [None | scalar ]
- vmin andvmax are used in conjunction withnorm tonormalize luminance data. If either isNone, itis autoscaled to the respective min or maxof the color arrayC. If notNone,vmin orvmax passed in here override any pre-existing valuessupplied in thenorm instance.
- shading: [ ‘flat’ | ‘faceted’ ]
If ‘faceted’, a black grid is drawn around each rectangle; if‘flat’, edges are not drawn. Default is ‘flat’, contrary toMATLAB.
- This kwarg is deprecated; please use ‘edgecolors’ instead:
- shading=’flat’ – edgecolors=’none’
- shading=’faceted – edgecolors=’k’
- edgecolors: [None |
'none'
| color | color sequence]IfNone, the rc setting is used by default.
If
'none'
, edges will not be visible.An mpl color or sequence of colors will set the edge color
- alpha:
0<=scalar<=1
orNone- the alpha blending value
- snap: bool
- Whether to snap the mesh to pixel boundaries.
Return value is amatplotlib.collections.Collection
instance.
The grid orientation follows the MATLAB convention: anarrayC with shape (nrows,ncolumns) is plotted withthe column number asX and the row number asY, increasingup; hence it is plotted the way the array would be printed,except that theY axis is reversed. That is,C is takenasC*(*y,x).
Similarly formeshgrid()
:
x=np.arange(5)y=np.arange(3)X,Y=np.meshgrid(x,y)
is equivalent to:
X=array([[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4]])Y=array([[0,0,0,0,0],[1,1,1,1,1],[2,2,2,2,2]])
so if you have:
C=rand(len(x),len(y))
then you need to transpose C:
pcolor(X,Y,C.T)
or:
pcolor(C.T)
MATLABpcolor()
always discards the last row and columnofC, but matplotlib displays the last row and column ifX andY are not specified, or ifX andY have one more row andcolumn thanC.
kwargs can be used to control thePolyCollection
properties:
Property Description agg_filter
unknown alpha
float or None animated
[True | False] antialiased
or antialiasedsBoolean or sequence of booleans array
unknown axes
an Axes
instanceclim
a length 2 sequence of floats clip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]cmap
a colormap or registered colormap name color
matplotlib color arg or sequence of rgba tuples contains
a callable function edgecolor
or edgecolorsmatplotlib color spec or sequence of specs facecolor
or facecolorsmatplotlib color spec or sequence of specs figure
a matplotlib.figure.Figure
instancegid
an id string hatch
[ ‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’ ] label
string or anything printable with ‘%s’ conversion. linestyle
or dashes or linestyles[‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | '-'
|'--'
|'-.'
|':'
|'None'
|''
|''
]linewidth
or linewidths or lwfloat or sequence of floats norm
unknown offset_position
unknown offsets
float or sequence of floats path_effects
unknown picker
[None|float|boolean|callable] pickradius
unknown rasterized
[True | False | None] sketch_params
unknown snap
unknown transform
Transform
instanceurl
a url string urls
unknown visible
[True | False] zorder
any number
Note
The defaultantialiaseds is False if the defaultedgecolors*=”none” is used. This eliminates artificial linesat patch boundaries, and works regardless of the value ofalpha. If *edgecolors is not “none”, then the defaultantialiaseds is taken fromrcParams[‘patch.antialiased’], which defaults toTrue.Stroking the edges may be preferred ifalpha is 1, butwill cause artifacts otherwise.
See also
pcolormesh()
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
pcolormesh
(*args,**kwargs)¶Plot a quadrilateral mesh.
Call signatures:
pcolormesh(C)pcolormesh(X,Y,C)pcolormesh(C,**kwargs)
Create a pseudocolor plot of a 2-D array.
pcolormesh is similar topcolor()
,but uses a different mechanism and returns a differentobject; pcolor returns aPolyCollection
but pcolormeshreturns aQuadMesh
. It is much faster,so it is almost always preferred for large arrays.
C may be a masked array, butX andY may not. Maskedarray support is implemented viacmap andnorm; incontrast,pcolor()
simply does notdraw quadrilaterals with masked colors or vertices.
Keyword arguments:
- cmap: [None | Colormap ]
- A
matplotlib.colors.Colormap
instance. IfNone, userc settings.- norm: [None | Normalize ]
- A
matplotlib.colors.Normalize
instance is used toscale luminance data to 0,1. IfNone, defaults tonormalize()
.- vmin/vmax: [None | scalar ]
- vmin andvmax are used in conjunction withnorm tonormalize luminance data. If either isNone, itis autoscaled to the respective min or maxof the color arrayC. If notNone,vmin orvmax passed in here override any pre-existing valuessupplied in thenorm instance.
- shading: [ ‘flat’ | ‘gouraud’ ]
- ‘flat’ indicates a solid color for each quad. When‘gouraud’, each quad will be Gouraud shaded. When gouraudshading, edgecolors is ignored.
- edgecolors: [None |
'None'
|'face'
| color | color sequence]IfNone, the rc setting is used by default.
If
'None'
, edges will not be visible.If
'face'
, edges will have the same color as the faces.An mpl color or sequence of colors will set the edge color
- alpha:
0<=scalar<=1
orNone- the alpha blending value
Return value is amatplotlib.collections.QuadMesh
object.
kwargs can be used to control thematplotlib.collections.QuadMesh
properties:
Property Description agg_filter
unknown alpha
float or None animated
[True | False] antialiased
or antialiasedsBoolean or sequence of booleans array
unknown axes
an Axes
instanceclim
a length 2 sequence of floats clip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]cmap
a colormap or registered colormap name color
matplotlib color arg or sequence of rgba tuples contains
a callable function edgecolor
or edgecolorsmatplotlib color spec or sequence of specs facecolor
or facecolorsmatplotlib color spec or sequence of specs figure
a matplotlib.figure.Figure
instancegid
an id string hatch
[ ‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’ ] label
string or anything printable with ‘%s’ conversion. linestyle
or dashes or linestyles[‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | '-'
|'--'
|'-.'
|':'
|'None'
|''
|''
]linewidth
or linewidths or lwfloat or sequence of floats norm
unknown offset_position
unknown offsets
float or sequence of floats path_effects
unknown picker
[None|float|boolean|callable] pickradius
unknown rasterized
[True | False | None] sketch_params
unknown snap
unknown transform
Transform
instanceurl
a url string urls
unknown visible
[True | False] zorder
any number
See also
pcolor()
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
phase_spectrum
(x,Fs=None,Fc=None,window=None,pad_to=None,sides=None,hold=None,data=None,**kwargs)¶Plot the phase spectrum.
Call signature:
phase_spectrum(x,Fs=2,Fc=0,window=mlab.window_hanning,pad_to=None,sides='default',**kwargs)
Compute the phase spectrum (unwrapped angle spectrum) ofx.Data is padded to a length ofpad_to and the windowing functionwindow is applied to the signal.
Parameters: | x : 1-D array or sequence
Fs : scalar
window : callable or ndarray
sides : [ ‘default’ | ‘onesided’ | ‘twosided’ ]
pad_to : integer
Fc : integer
**kwargs :
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Returns: | spectrum : 1-D array
freqs : 1-D array
line : a
|
See also
magnitude_spectrum()
magnitude_spectrum()
plots the magnitudes of the corresponding frequencies.angle_spectrum()
angle_spectrum()
plots the wrapped version of this function.specgram()
specgram()
can plot the phase spectrum of segments within the signal in a colormap.
Examples
matplotlib.pyplot.
pie
(x,explode=None,labels=None,colors=None,autopct=None,pctdistance=0.6,shadow=False,labeldistance=1.1,startangle=None,radius=None,counterclock=True,wedgeprops=None,textprops=None,center=(0,0),frame=False,hold=None,data=None)¶Plot a pie chart.
Make a pie chart of arrayx. The fractional area of eachwedge is given byx/sum(x)
. Ifsum(x)<=1
, then thevalues of x give the fractional area directly and the arraywill not be normalized. The wedges are plottedcounterclockwise, by default starting from the x-axis.
Parameters: | x : array-like
explode : array-like, optional, default: None
labels : list, optional, default: None
colors : array-like, optional, default: None
autopct : None (default), string, or function, optional
pctdistance : float, optional, default: 0.6
shadow : bool, optional, default: False
labeldistance : float, optional, default: 1.1
startangle : float, optional, default: None
radius : float, optional, default: None
counterclock : bool, optional, default: True
wedgeprops : dict, optional, default: None
textprops : dict, optional, default: None
center : list of float, optional, default: (0, 0)
frame : bool, optional, default: False
|
---|---|
Returns: | patches : list
texts : list
autotexts : list
|
Notes
The pie chart will probably look best if the figure and axes aresquare, or the Axes aspect is equal.
Examples
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
pink
()¶set the default colormap to pink and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
plasma
()¶set the default colormap to plasma and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
plot
(*args,**kwargs)¶Plot lines and/or markers to theAxes
.args is a variable lengthargument, allowing for multiplex,y pairs with anoptional format string. For example, each of the following islegal:
plot(x,y)# plot x and y using default line style and colorplot(x,y,'bo')# plot x and y using blue circle markersplot(y)# plot y using x as index array 0..N-1plot(y,'r+')# ditto, but with red plusses
Ifx and/ory is 2-dimensional, then the corresponding columnswill be plotted.
If used with labeled data, make sure that the color spec is notincluded as an element in data, as otherwise the last caseplot("v","r",data={"v":...,"r":...)
can be interpreted as the first case which would doplot(v,r)
using the default line style and color.
If not used with labeled data (i.e., without a data argument),an arbitrary number ofx,y,fmt groups can be specified, as in:
a.plot(x1,y1,'g^',x2,y2,'g-')
Return value is a list of lines that were added.
By default, each line is assigned a different style specified by a‘style cycle’. To change this behavior, you can edit theaxes.prop_cycle rcParam.
The following format string characters are accepted to controlthe line style or marker:
character | description |
---|---|
'-' | solid line style |
'--' | dashed line style |
'-.' | dash-dot line style |
':' | dotted line style |
'.' | point marker |
',' | pixel marker |
'o' | circle marker |
'v' | triangle_down marker |
'^' | triangle_up marker |
'<' | triangle_left marker |
'>' | triangle_right marker |
'1' | tri_down marker |
'2' | tri_up marker |
'3' | tri_left marker |
'4' | tri_right marker |
's' | square marker |
'p' | pentagon marker |
'*' | star marker |
'h' | hexagon1 marker |
'H' | hexagon2 marker |
'+' | plus marker |
'x' | x marker |
'D' | diamond marker |
'd' | thin_diamond marker |
'|' | vline marker |
'_' | hline marker |
The following color abbreviations are supported:
character | color |
---|---|
‘b’ | blue |
‘g’ | green |
‘r’ | red |
‘c’ | cyan |
‘m’ | magenta |
‘y’ | yellow |
‘k’ | black |
‘w’ | white |
In addition, you can specify colors in many weird andwonderful ways, including full names ('green'
), hexstrings ('#008000'
), RGB or RGBA tuples ((0,1,0,1)
) orgrayscale intensities as a string ('0.8'
). Of these, thestring specifications can be used in place of afmt
group,but the tuple forms can be used only askwargs
.
Line styles and colors are combined in a single format string, as in'bo'
for blue circles.
Thekwargs can be used to set line properties (any property that hasaset_*
method). You can use this to set a line label (for autolegends), linewidth, anitialising, marker face color, etc. Here is anexample:
plot([1,2,3],[1,2,3],'go-',label='line 1',linewidth=2)plot([1,2,3],[1,4,9],'rs',label='line 2')axis([0,4,0,10])legend()
If you make multiple lines with one plot command, the kwargsapply to all those lines, e.g.:
plot(x1,y1,x2,y2,antialiased=False)
Neither line will be antialiased.
You do not need to use format strings, which are justabbreviations. All of the line properties can be controlledby keyword arguments. For example, you can set the color,marker, linestyle, and markercolor with:
plot(x,y,color='green',linestyle='dashed',marker='o',markerfacecolor='blue',markersize=12).
SeeLine2D
for details.
The kwargs areLine2D
properties:
Property Description agg_filter
unknown alpha
float (0.0 transparent through 1.0 opaque) animated
[True | False] antialiased
or aa[True | False] axes
an Axes
instanceclip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]color
or cany matplotlib color contains
a callable function dash_capstyle
[‘butt’ | ‘round’ | ‘projecting’] dash_joinstyle
[‘miter’ | ‘round’ | ‘bevel’] dashes
sequence of on/off ink in points drawstyle
[‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’] figure
a matplotlib.figure.Figure
instancefillstyle
[‘full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’] gid
an id string label
string or anything printable with ‘%s’ conversion. linestyle
or ls[‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | '-'
|'--'
|'-.'
|':'
|'None'
|''
|''
]linewidth
or lwfloat value in points marker
Avalidmarkerstyle
markeredgecolor
or mecany matplotlib color markeredgewidth
or mewfloat value in points markerfacecolor
or mfcany matplotlib color markerfacecoloralt
or mfcaltany matplotlib color markersize
or msfloat markevery
[None | int | length-2 tuple of int | slice | list/array of int | float | length-2 tuple of float] path_effects
unknown picker
float distance in points or callable pick function fn(artist,event)
pickradius
float distance in points rasterized
[True | False | None] sketch_params
unknown snap
unknown solid_capstyle
[‘butt’ | ‘round’ | ‘projecting’] solid_joinstyle
[‘miter’ | ‘round’ | ‘bevel’] transform
a matplotlib.transforms.Transform
instanceurl
a url string visible
[True | False] xdata
1D array ydata
1D array zorder
any number
kwargsscalex andscaley, if defined, are passed on toautoscale_view()
to determinewhether thex andy axes are autoscaled; the default isTrue.
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
plot_date
(x,y,fmt='o',tz=None,xdate=True,ydate=False,hold=None,data=None,**kwargs)¶A plot with data that contains dates.
Similar to theplot()
command, exceptthex ory (or both) data is considered to be dates, and theaxis is labeled accordingly.
x and/ory can be a sequence of dates represented as floatdays since 0001-01-01 UTC.
Note if you are using custom date tickers and formatters, itmay be necessary to set the formatters/locators after the callto meth:plot_date
since meth:plot_date
will set thedefault tick locator toclass:matplotlib.dates.AutoDateLocator
(if the ticklocator is not already set to aclass:matplotlib.dates.DateLocator
instance) and thedefault tick formatter toclass:matplotlib.dates.AutoDateFormatter
(if the tickformatter is not already set to aclass:matplotlib.dates.DateFormatter
instance).
Parameters: | fmt : string
tz : [None | timezone string |
xdate : boolean
ydate : boolean
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Returns: | lines | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other Parameters: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
kwargs : properties :
.. note::
|
See also
matplotlib.dates
matplotlib.dates.date2num
matplotlib.dates.num2date
matplotlib.dates.drange
matplotlib.pyplot.
plotfile
(fname,cols=(0,),plotfuncs=None,comments='#',skiprows=0,checkrows=5,delimiter=',',names=None,subplots=True,newfig=True,**kwargs)¶Plot the data in in a file.
cols is a sequence of column identifiers to plot. An identifieris either an int or a string. If it is an int, it indicates thecolumn number. If it is a string, it indicates the column header.matplotlib will make column headers lower case, replace spaces withunderscores, and remove all illegal characters; so'AdjClose*'
will have name'adj_close'
.
plotfuncs, if notNone, is a dictionary mapping identifier toanAxes
plotting function as a string.Default is ‘plot’, other choices are ‘semilogy’, ‘fill’, ‘bar’,etc. You must use the same type of identifier in thecolsvector as you use in theplotfuncs dictionary, e.g., integercolumn numbers in both or column names in both. IfsubplotsisFalse, then including any function such as ‘semilogy’that changes the axis scaling will set the scaling for allcolumns.
comments,skiprows,checkrows,delimiter, andnamesare all passed on tomatplotlib.pylab.csv2rec()
toload the data into a record array.
Ifnewfig isTrue, the plot always will be made in a new figure;ifFalse, it will be made in the current figure if one exists,else in a new figure.
kwargs are passed on to plotting functions.
Example usage:
# plot the 2nd and 4th column against the 1st in two subplotsplotfile(fname,(0,1,3))# plot using column names; specify an alternate plot type for volumeplotfile(fname,('date','volume','adj_close'),plotfuncs={'volume':'semilogy'})
Note: plotfile is intended as a convenience for quickly plottingdata from flat files; it is not intended as an alternativeinterface to general plotting with pyplot or matplotlib.
matplotlib.pyplot.
polar
(*args,**kwargs)¶Make a polar plot.
call signature:
polar(theta,r,**kwargs)
Multipletheta,r arguments are supported, with formatstrings, as inplot()
.
matplotlib.pyplot.
prism
()¶set the default colormap to prism and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
psd
(x,NFFT=None,Fs=None,Fc=None,detrend=None,window=None,noverlap=None,pad_to=None,sides=None,scale_by_freq=None,return_line=None,hold=None,data=None,**kwargs)¶Plot the power spectral density.
Call signature:
psd(x,NFFT=256,Fs=2,Fc=0,detrend=mlab.detrend_none,window=mlab.window_hanning,noverlap=0,pad_to=None,sides='default',scale_by_freq=None,return_line=None,**kwargs)
The power spectral density by Welch’s averageperiodogram method. The vectorx is divided intoNFFT lengthsegments. Each segment is detrended by functiondetrend andwindowed by functionwindow.noverlap gives the length ofthe overlap between segments. The
of each segment
are averaged to compute
,with a scaling to correct for power loss due to windowing.
If len(x) <NFFT, it will be zero padded toNFFT.
Parameters: | x : 1-D array or sequence
Fs : scalar
window : callable or ndarray
sides : [ ‘default’ | ‘onesided’ | ‘twosided’ ]
pad_to : integer
NFFT : integer
detrend : {‘default’, ‘constant’, ‘mean’, ‘linear’, ‘none’} or callable
scale_by_freq : boolean, optional
noverlap : integer
Fc : integer
return_line : bool
**kwargs :
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Returns: | Pxx : 1-D array
freqs : 1-D array
line : a
|
See also
specgram()
specgram()
differs in the default overlap; in not returning the mean of the segment periodograms; in returning the times of the segments; and in plotting a colormap instead of a line.magnitude_spectrum()
magnitude_spectrum()
plots the magnitude spectrum.csd()
csd()
plots the spectral density between two signals.
Notes
For plotting, the power is plotted as for decibels, thoughPxx itselfis returned.
References
Bendat & Piersol – Random Data: Analysis and Measurement Procedures,John Wiley & Sons (1986)
Examples
matplotlib.pyplot.
quiver
(*args,**kw)¶Plot a 2-D field of arrows.
Call signatures:
quiver(U,V,**kw)quiver(U,V,C,**kw)quiver(X,Y,U,V,**kw)quiver(X,Y,U,V,C,**kw)
U andV are the arrow data,X andY set the locaiton of thearrows, andC sets the color of the arrows. These arguments may be 1-D or2-D arrays or sequences.
IfX andY are absent, they will be generated as a uniform grid.IfU andV are 2-D arrays andX andY are 1-D, and iflen(X)
andlen(Y)
match the column and row dimensions ofU, thenX andY will beexpanded withnumpy.meshgrid()
.
The default settings auto-scales the length of the arrows to a reasonable size.To change this behavior see thescale andscale_units kwargs.
The defaults give a slightly swept-back arrow; to make the head atriangle, makeheadaxislength the same asheadlength. To make thearrow more pointed, reduceheadwidth or increaseheadlength andheadaxislength. To make the head smaller relative to the shaft,scale down all the head parameters. You will probably do best to leaveminshaft alone.
linewidths andedgecolors can be used to customize the arrowoutlines.
Parameters: | X : 1D or 2D array, sequence, optional
Y : 1D or 2D array, sequence, optional
U : 1D or 2D array or masked array, sequence
V : 1D or 2D array or masked array, sequence
C : 1D or 2D array, sequence, optional
units : [ ‘width’ | ‘height’ | ‘dots’ | ‘inches’ | ‘x’ | ‘y’ | ‘xy’ ]
angles : [ ‘uv’ | ‘xy’ ], array, optional
scale : None, float, optional
scale_units : [ ‘width’ | ‘height’ | ‘dots’ | ‘inches’ | ‘x’ | ‘y’ | ‘xy’ ], None, optional
width : scalar, optional
headwidth : scalar, optional
headlength : scalar, optional
headaxislength : scalar, optional
minshaft : scalar, optional
minlength : scalar, optional
pivot : [ ‘tail’ | ‘mid’ | ‘middle’ | ‘tip’ ], optional
color : [ color | color sequence ], optional
|
---|
See also
quiverkey
Notes
AdditionalPolyCollection
keyword arguments:
Property Description agg_filter
unknown alpha
float or None animated
[True | False] antialiased
or antialiasedsBoolean or sequence of booleans array
unknown axes
an Axes
instanceclim
a length 2 sequence of floats clip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]cmap
a colormap or registered colormap name color
matplotlib color arg or sequence of rgba tuples contains
a callable function edgecolor
or edgecolorsmatplotlib color spec or sequence of specs facecolor
or facecolorsmatplotlib color spec or sequence of specs figure
a matplotlib.figure.Figure
instancegid
an id string hatch
[ ‘/’ | ‘\’ | ‘|’ | ‘-‘ | ‘+’ | ‘x’ | ‘o’ | ‘O’ | ‘.’ | ‘*’ ] label
string or anything printable with ‘%s’ conversion. linestyle
or dashes or linestyles[‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | '-'
|'--'
|'-.'
|':'
|'None'
|''
|''
]linewidth
or linewidths or lwfloat or sequence of floats norm
unknown offset_position
unknown offsets
float or sequence of floats path_effects
unknown picker
[None|float|boolean|callable] pickradius
unknown rasterized
[True | False | None] sketch_params
unknown snap
unknown transform
Transform
instanceurl
a url string urls
unknown visible
[True | False] zorder
any number
Examples
matplotlib.pyplot.
quiverkey
(*args,**kw)¶Add a key to a quiver plot.
Call signature:
quiverkey(Q,X,Y,U,label,**kw)
Arguments:
- Q:
- The Quiver instance returned by a call to quiver.
- X,Y:
- The location of the key; additional explanation follows.
- U:
- The length of the key
- label:
- A string with the length and units of the key
Keyword arguments:
- coordinates = [ ‘axes’ | ‘figure’ | ‘data’ | ‘inches’ ]
- Coordinate system and units forX,Y: ‘axes’ and ‘figure’ arenormalized coordinate systems with 0,0 in the lower left and 1,1in the upper right; ‘data’ are the axes data coordinates (used forthe locations of the vectors in the quiver plot itself); ‘inches’is position in the figure in inches, with 0,0 at the lower leftcorner.
- color:
- overrides face and edge colors fromQ.
- labelpos = [ ‘N’ | ‘S’ | ‘E’ | ‘W’ ]
- Position the label above, below, to the right, to the left of thearrow, respectively.
- labelsep:
- Distance in inches between the arrow and the label. Default is0.1
- labelcolor:
- defaults to default
Text
color.- fontproperties:
- A dictionary with keyword arguments accepted by the
FontProperties
initializer:family,style,variant,size,weight
Any additional keyword arguments are used to override vectorproperties taken fromQ.
The positioning of the key depends onX,Y,coordinates, andlabelpos. Iflabelpos is ‘N’ or ‘S’,X,Y give the positionof the middle of the key arrow. Iflabelpos is ‘E’,X,Ypositions the head, and iflabelpos is ‘W’,X,Y positions thetail; in either of these two cases,X,Y is somewhere in themiddle of the arrow+label key object.
matplotlib.pyplot.
rc
(*args,**kwargs)¶Set the current rc params. Group is the grouping for the rc, e.g.,forlines.linewidth
the group islines
, foraxes.facecolor
, the group isaxes
, and so on. Group mayalso be a list or tuple of group names, e.g., (xtick,ytick).kwargs is a dictionary attribute name/value pairs, e.g.,:
rc('lines',linewidth=2,color='r')
sets the current rc params and is equivalent to:
rcParams['lines.linewidth']=2rcParams['lines.color']='r'
The following aliases are available to save typing for interactiveusers:
Alias | Property |
---|---|
‘lw’ | ‘linewidth’ |
‘ls’ | ‘linestyle’ |
‘c’ | ‘color’ |
‘fc’ | ‘facecolor’ |
‘ec’ | ‘edgecolor’ |
‘mew’ | ‘markeredgewidth’ |
‘aa’ | ‘antialiased’ |
Thus you could abbreviate the above rc command as:
rc('lines',lw=2,c='r')
Note you can use python’s kwargs dictionary facility to storedictionaries of default parameters. e.g., you can customize thefont rc as follows:
font={'family':'monospace','weight':'bold','size':'larger'}rc('font',**font)# pass in the font dict as kwargs
This enables you to easily switch between several configurations. Usematplotlib.style.use('default')
orrcdefaults()
torestore the default rc params after changes.
matplotlib.pyplot.
rc_context
(rc=None,fname=None)¶Return a context manager for managing rc settings.
This allows one to do:
withmpl.rc_context(fname='screen.rc'):plt.plot(x,a)withmpl.rc_context(fname='print.rc'):plt.plot(x,b)plt.plot(x,c)
The ‘a’ vs ‘x’ and ‘c’ vs ‘x’ plots would have settings from‘screen.rc’, while the ‘b’ vs ‘x’ plot would have settings from‘print.rc’.
A dictionary can also be passed to the context manager:
withmpl.rc_context(rc={'text.usetex':True},fname='screen.rc'):plt.plot(x,a)
The ‘rc’ dictionary takes precedence over the settings loaded from‘fname’. Passing a dictionary only is also valid.
matplotlib.pyplot.
rcdefaults
()¶Restore the rc params from Matplotlib’s internal defaults.
See also
rc_file_defaults
matplotlib.style.use
style.use('default')
to restore the default style.matplotlib.pyplot.
rgrids
(*args,**kwargs)¶Get or set the radial gridlines on a polar plot.
call signatures:
lines,labels=rgrids()lines,labels=rgrids(radii,labels=None,angle=22.5,**kwargs)
When called with no arguments,rgrid()
simply returns thetuple (lines,labels), wherelines is an array of radialgridlines (Line2D
instances) andlabels is an array of tick labels(Text
instances). When called witharguments, the labels will appear at the specified radialdistances and angles.
labels, if notNone, is a len(radii) list of strings of thelabels to use at each angle.
Iflabels is None, the rformatter will be used
Examples:
# set the locations of the radial gridlines and labelslines,labels=rgrids((0.25,0.5,1.0))# set the locations and labels of the radial gridlines and labelslines,labels=rgrids((0.25,0.5,1.0),('Tom','Dick','Harry')
matplotlib.pyplot.
savefig
(*args,**kwargs)¶Save the current figure.
Call signature:
savefig(fname,dpi=None,facecolor='w',edgecolor='w',orientation='portrait',papertype=None,format=None,transparent=False,bbox_inches=None,pad_inches=0.1,frameon=None)
The output formats available depend on the backend being used.
Arguments:
- fname:
A string containing a path to a filename, or a Pythonfile-like object, or possibly some backend-dependent objectsuch as
PdfPages
.Ifformat isNone andfname is a string, the outputformat is deduced from the extension of the filename. Ifthe filename has no extension, the value of the rc parameter
savefig.format
is used.Iffname is not a string, remember to specifyformat toensure that the correct backend is used.
Keyword arguments:
- dpi: [None |
scalar>0
| ‘figure’]- The resolution in dots per inch. IfNone it will default tothe value
savefig.dpi
in the matplotlibrc file. If ‘figure’it will set the dpi to be the value of the figure.- facecolor,edgecolor:
- the colors of the figure rectangle
- orientation: [ ‘landscape’ | ‘portrait’ ]
- not supported on all backends; currently only on postscript output
- papertype:
- One of ‘letter’, ‘legal’, ‘executive’, ‘ledger’, ‘a0’ through‘a10’, ‘b0’ through ‘b10’. Only supported for postscriptoutput.
- format:
- One of the file extensions supported by the activebackend. Most backends support png, pdf, ps, eps and svg.
- transparent:
- IfTrue, the axes patches will all be transparent; thefigure patch will also be transparent unless facecolorand/or edgecolor are specified via kwargs.This is useful, for example, for displayinga plot on top of a colored background on a web page. Thetransparency of these patches will be restored to theiroriginal values upon exit of this function.
- frameon:
- IfTrue, the figure patch will be colored, ifFalse, thefigure background will be transparent. If not provided, thercParam ‘savefig.frameon’ will be used.
- bbox_inches:
- Bbox in inches. Only the given portion of the figure issaved. If ‘tight’, try to figure out the tight bbox ofthe figure.
- pad_inches:
- Amount of padding around the figure when bbox_inches is‘tight’.
- bbox_extra_artists:
- A list of extra artists that will be considered when thetight bbox is calculated.
matplotlib.pyplot.
sca
(ax)¶Set the current Axes instance toax.
The current Figure is updated to the parent ofax.
matplotlib.pyplot.
scatter
(x,y,s=None,c=None,marker=None,cmap=None,norm=None,vmin=None,vmax=None,alpha=None,linewidths=None,verts=None,edgecolors=None,hold=None,data=None,**kwargs)¶Make a scatter plot ofx
vsy
Marker size is scaled bys
and marker color is mapped toc
Parameters: | x, y : array_like, shape (n, )
s : scalar or array_like, shape (n, ), optional
c : color, sequence, or sequence of color, optional, default: ‘b’
marker :
cmap :
norm :
vmin, vmax : scalar, optional, default: None
alpha : scalar, optional, default: None
linewidths : scalar or array_like, optional, default: None
verts : sequence of (x, y), optional
edgecolors : color or sequence of color, optional, default: None
|
---|---|
Returns: | paths : |
Other Parameters: | |
kwargs : |
See also
plot
Notes
Theplot
function will be faster for scatterplots where markersdon’t vary in size or color.
Any or all ofx
,y
,s
, andc
may be masked arrays, in whichcase all masks will be combined and only unmasked points will beplotted.
Fundamentally, scatter works with 1-D arrays;x
,y
,s
, andc
may be input as 2-D arrays, but within scatter they will beflattened. The exception isc
, which will be flattened only if itssize matches the size ofx
andy
.
Examples
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
sci
(im)¶Set the current image. This image will be the target of colormapcommands likejet()
,hot()
orclim()
). The current image is anattribute of the current axes.
matplotlib.pyplot.
semilogx
(*args,**kwargs)¶Make a plot with log scaling on thex axis.
Parameters: | basex : float, optional
subsx : array_like, optional
nonposx : string, optional, {‘mask’, ‘clip’}
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Returns: |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other Parameters: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
:class:`~matplotlib.lines.Line2D` properties:
|
See also
loglog
Notes
This function supports all the keyword arguments ofplot()
andmatplotlib.axes.Axes.set_xscale()
.
matplotlib.pyplot.
semilogy
(*args,**kwargs)¶Make a plot with log scaling on they
axis.
Parameters: | basey : scalar > 1
|
---|---|
Returns: |
|
Other Parameters: | |
kwargs :
===================================================================================== =============================================================================================================================================== Property Description ===================================================================================== =============================================================================================================================================== :meth:`agg_filter <matplotlib.artist.Artist.set_agg_filter>` unknown :meth:`alpha <matplotlib.artist.Artist.set_alpha>` float (0.0 transparent through 1.0 opaque) :meth:`animated <matplotlib.artist.Artist.set_animated>` [True | False] :meth:`antialiased <matplotlib.lines.Line2D.set_antialiased>` or aa [True | False] :meth:`axes <matplotlib.artist.Artist.set_axes>` an :class:`~matplotlib.axes.Axes` instance :meth:`clip_box <matplotlib.artist.Artist.set_clip_box>` a :class:`matplotlib.transforms.Bbox` instance :meth:`clip_on <matplotlib.artist.Artist.set_clip_on>` [True | False] :meth:`clip_path <matplotlib.artist.Artist.set_clip_path>` [ (:class:`~matplotlib.path.Path`, :class:`~matplotlib.transforms.Transform`) | :class:`~matplotlib.patches.Patch` | None ] :meth:`color <matplotlib.lines.Line2D.set_color>` or c any matplotlib color :meth:`contains <matplotlib.artist.Artist.set_contains>` a callable function :meth:`dash_capstyle <matplotlib.lines.Line2D.set_dash_capstyle>` [‘butt’ | ‘round’ | ‘projecting’] :meth:`dash_joinstyle <matplotlib.lines.Line2D.set_dash_joinstyle>` [‘miter’ | ‘round’ | ‘bevel’] :meth:`dashes <matplotlib.lines.Line2D.set_dashes>` sequence of on/off ink in points :meth:`drawstyle <matplotlib.lines.Line2D.set_drawstyle>` [‘default’ | ‘steps’ | ‘steps-pre’ | ‘steps-mid’ | ‘steps-post’] :meth:`figure <matplotlib.artist.Artist.set_figure>` a :class:`matplotlib.figure.Figure` instance :meth:`fillstyle <matplotlib.lines.Line2D.set_fillstyle>` [‘full’ | ‘left’ | ‘right’ | ‘bottom’ | ‘top’ | ‘none’] :meth:`gid <matplotlib.artist.Artist.set_gid>` an id string :meth:`label <matplotlib.artist.Artist.set_label>` string or anything printable with ‘%s’ conversion. :meth:`linestyle <matplotlib.lines.Line2D.set_linestyle>` or ls [‘solid’ | ‘dashed’, ‘dashdot’, ‘dotted’ | (offset, on-off-dash-seq) | ``’-‘`` | ``’–’`` | ``’-.’`` | ``’:’`` | ``’None’`` | ``’ ‘`` | ``’‘``] :meth:`linewidth <matplotlib.lines.Line2D.set_linewidth>` or lw float value in points :meth:`marker <matplotlib.lines.Line2D.set_marker>` :mod:`A valid marker style <matplotlib.markers>` :meth:`markeredgecolor <matplotlib.lines.Line2D.set_markeredgecolor>` or mec any matplotlib color :meth:`markeredgewidth <matplotlib.lines.Line2D.set_markeredgewidth>` or mew float value in points :meth:`markerfacecolor <matplotlib.lines.Line2D.set_markerfacecolor>` or mfc any matplotlib color :meth:`markerfacecoloralt <matplotlib.lines.Line2D.set_markerfacecoloralt>` or mfcalt any matplotlib color :meth:`markersize <matplotlib.lines.Line2D.set_markersize>` or ms float :meth:`markevery <matplotlib.lines.Line2D.set_markevery>` [None | int | length-2 tuple of int | slice | list/array of int | float | length-2 tuple of float] :meth:`path_effects <matplotlib.artist.Artist.set_path_effects>` unknown :meth:`picker <matplotlib.lines.Line2D.set_picker>` float distance in points or callable pick function ``fn(artist, event)`` :meth:`pickradius <matplotlib.lines.Line2D.set_pickradius>` float distance in points :meth:`rasterized <matplotlib.artist.Artist.set_rasterized>` [True | False | None] :meth:`sketch_params <matplotlib.artist.Artist.set_sketch_params>` unknown :meth:`snap <matplotlib.artist.Artist.set_snap>` unknown :meth:`solid_capstyle <matplotlib.lines.Line2D.set_solid_capstyle>` [‘butt’ | ‘round’ | ‘projecting’] :meth:`solid_joinstyle <matplotlib.lines.Line2D.set_solid_joinstyle>` [‘miter’ | ‘round’ | ‘bevel’] :meth:`transform <matplotlib.lines.Line2D.set_transform>` a :class:`matplotlib.transforms.Transform` instance :meth:`url <matplotlib.artist.Artist.set_url>` a url string :meth:`visible <matplotlib.artist.Artist.set_visible>` [True | False] :meth:`xdata <matplotlib.lines.Line2D.set_xdata>` 1D array :meth:`ydata <matplotlib.lines.Line2D.set_ydata>` 1D array :meth:`zorder <matplotlib.artist.Artist.set_zorder>` any number ===================================================================================== =============================================================================================================================================== |
See also
loglog()
matplotlib.pyplot.
set_cmap
(cmap)¶Set the default colormap. Applies to the current image if any.See help(colormaps) for more information.
cmap must be aColormap
instance, orthe name of a registered colormap.
Seematplotlib.cm.register_cmap()
andmatplotlib.cm.get_cmap()
.
matplotlib.pyplot.
setp
(*args,**kwargs)¶Set a property on an artist object.
matplotlib supports the use ofsetp()
(“set property”) andgetp()
to set and get object properties, as well as to dointrospection on the object. For example, to set the linestyle of aline to be dashed, you can do:
>>>line,=plot([1,2,3])>>>setp(line,linestyle='--')
If you want to know the valid types of arguments, you can provide thename of the property you want to set without a value:
>>>setp(line,'linestyle') linestyle: [ '-' | '--' | '-.' | ':' | 'steps' | 'None' ]
If you want to see all the properties that can be set, and theirpossible values, you can do:
>>>setp(line) ... long output listing omitted
setp()
operates on a single instance or a list of instances.If you are in query mode introspecting the possible values, onlythe first instance in the sequence is used. When actually settingvalues, all the instances will be set. e.g., suppose you have alist of two lines, the following will make both lines thicker andred:
>>>x=arange(0,1.0,0.01)>>>y1=sin(2*pi*x)>>>y2=sin(4*pi*x)>>>lines=plot(x,y1,x,y2)>>>setp(lines,linewidth=2,color='r')
setp()
works with the MATLAB style string/value pairs orwith python kwargs. For example, the following are equivalent:
>>>setp(lines,'linewidth',2,'color','r')# MATLAB style>>>setp(lines,linewidth=2,color='r')# python style
matplotlib.pyplot.
show
(*args,**kw)¶Display a figure.When running in ipython with its pylab mode, display allfigures and return to the ipython prompt.
In non-interactive mode, display all figures and block untilthe figures have been closed; in interactive mode it has noeffect unless figures were created prior to a change fromnon-interactive to interactive mode (not recommended). Inthat case it displays the figures but does not block.
A single experimental keyword argument,block, may beset to True or False to override the blocking behaviordescribed above.
matplotlib.pyplot.
specgram
(x,NFFT=None,Fs=None,Fc=None,detrend=None,window=None,noverlap=None,cmap=None,xextent=None,pad_to=None,sides=None,scale_by_freq=None,mode=None,scale=None,vmin=None,vmax=None,hold=None,data=None,**kwargs)¶Plot a spectrogram.
Call signature:
specgram(x,NFFT=256,Fs=2,Fc=0,detrend=mlab.detrend_none,window=mlab.window_hanning,noverlap=128,cmap=None,xextent=None,pad_to=None,sides='default',scale_by_freq=None,mode='default',scale='default',**kwargs)
Compute and plot a spectrogram of data inx. Data are split intoNFFT length segments and the spectrum of each section iscomputed. The windowing functionwindow is applied to eachsegment, and the amount of overlap of each segment isspecified withnoverlap. The spectrogram is plotted as a colormap(using imshow).
Parameters: | x : 1-D array or sequence
Fs : scalar
window : callable or ndarray
sides : [ ‘default’ | ‘onesided’ | ‘twosided’ ]
pad_to : integer
NFFT : integer
detrend : {‘default’, ‘constant’, ‘mean’, ‘linear’, ‘none’} or callable
scale_by_freq : boolean, optional
mode : [ ‘default’ | ‘psd’ | ‘magnitude’ | ‘angle’ | ‘phase’ ]
noverlap : integer
scale : [ ‘default’ | ‘linear’ | ‘dB’ ]
Fc : integer
cmap :
xextent : [None | (xmin, xmax)]
**kwargs :
|
---|---|
Returns: | spectrum : 2-D array
freqs : 1-D array
t : 1-D array
im : instance of class
|
See also
psd()
psd()
differs in the default overlap; in returning the mean of the segment periodograms; in not returning times; and in generating a line plot instead of colormap.magnitude_spectrum()
angle_spectrum()
phase_spectrum()
Notes
detrend andscale_by_freq only apply whenmode is set to‘psd’
Examples
matplotlib.pyplot.
spectral
()¶set the default colormap to spectral and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
spring
()¶set the default colormap to spring and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
spy
(Z,precision=0,marker=None,markersize=None,aspect='equal',**kwargs)¶Plot the sparsity pattern on a 2-D array.
spy(Z)
plots the sparsity pattern of the 2-D arrayZ.
Parameters: | Z : sparse array (n, m)
precision : float, optional, default: 0
origin : [“upper”, “lower”], optional, default: “upper”
aspect : [‘auto’ | ‘equal’ | scalar], optional, default: “equal”
Two plotting styles are available: image or marker. Both are available for full arrays, but only the marker style works for :class:`scipy.sparse.spmatrix` instances. If *marker* and *markersize* are *None*, an image will be returned and any remaining kwargs are passed to :func:`~matplotlib.pyplot.imshow`; else, a :class:`~matplotlib.lines.Line2D` object will be returned with the value of marker determining the marker type, and any remaining kwargs passed to the :meth:`~matplotlib.axes.Axes.plot` method. If *marker* and *markersize* are *None*, useful kwargs include: * *cmap* * *alpha* |
---|
matplotlib.pyplot.
stackplot
(x,*args,**kwargs)¶Draws a stacked area plot.
x : 1d array of dimension N
1xN. The data is assumed to be unstacked. Each of the followingcalls is legal:
stackplot(x,y)# where y is MxNstackplot(x,y1,y2,y3,y4)# where y1, y2, y3, y4, are all 1xNm
Keyword arguments:
ThemeRiver
. ‘wiggle’ minimizes thesum of the squared slopes. ‘weighted_wiggle’ does thesame but weights to account for size of each layer.It is also calledStreamgraph
-layout. More detailscan be found athttp://leebyron.com/streamgraph/.labels : A list or tuple of labels to assign to each data series.
fill_between()
Returnsr : A list ofPolyCollection
, one for eachelement in the stacked area plot.
matplotlib.pyplot.
stem
(*args,**kwargs)¶Create a stem plot.
Call signatures:
stem(y,linefmt='b-',markerfmt='bo',basefmt='r-')stem(x,y,linefmt='b-',markerfmt='bo',basefmt='r-')
A stem plot plots vertical lines (usinglinefmt) at eachxlocation from the baseline toy, and places a marker thereusingmarkerfmt. A horizontal line at 0 is is plotted usingbasefmt.
If nox values are provided, the default is (0, 1, ..., len(y) - 1)
Return value is a tuple (markerline,stemlines,baseline).
See also
Thisdocumentfor details.
Example:
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
step
(x,y,*args,**kwargs)¶Make a step plot.
Parameters: | x : array_like
y : array_like
|
---|---|
Returns: | list
|
Other Parameters: | |
where : [ ‘pre’ | ‘post’ | ‘mid’ ]
|
Notes
Additional parameters are the same as those forplot()
.
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
streamplot
(x,y,u,v,density=1,linewidth=None,color=None,cmap=None,norm=None,arrowsize=1,arrowstyle='-|>',minlength=0.1,transform=None,zorder=None,start_points=None,hold=None,data=None)¶Draws streamlines of a vector flow.
density=1
, the domainis divided into a 30x30 grid—density linearly scales this grid.Each cell in the grid can have, at most, one traversing streamline.For different densities in each direction, use [density_x, density_y].Colormap
Normalize
FancyArrowPatch
.x
andy
arrays.Returns:
- stream_container:StreamplotSet
Container object with attributes
- lines:
matplotlib.collections.LineCollection
of streamlines- arrows: collection of
matplotlib.patches.FancyArrowPatch
objects representing arrows half-way along streamlines.This container will probably change in the future to allow changesto the colormap, alpha, etc. for both lines and arrows, but thesechanges should be backward compatible.
matplotlib.pyplot.
subplot
(*args,**kwargs)¶Return a subplot axes positioned by the given grid definition.
Typical call signature:
subplot(nrows,ncols,plot_number)
Wherenrows andncols are used to notionally split the figureintonrows*ncols
sub-axes, andplot_number is used to identifythe particular subplot that this function is to create within the notionalgrid.plot_number starts at 1, increments across rows first and has amaximum ofnrows*ncols
.
In the case whennrows,ncols andplot_number are all less than 10,a convenience exists, such that the a 3 digit number can be given instead,where the hundreds representnrows, the tens representncols and theunits representplot_number. For instance:
subplot(211)
produces a subaxes in a figure which represents the top plot (i.e. thefirst) in a 2 row by 1 column notional grid (no grid actually exists,but conceptually this is how the returned subplot has been positioned).
Note
Creating a subplot will delete any pre-existing subplot that overlapswith it beyond sharing a boundary:
importmatplotlib.pyplotasplt# plot a line, implicitly creating a subplot(111)plt.plot([1,2,3])# now create a subplot which represents the top plot of a grid# with 2 rows and 1 column. Since this subplot will overlap the# first, the plot (and its axes) previously created, will be removedplt.subplot(211)plt.plot(range(12))plt.subplot(212,facecolor='y')# creates 2nd subplot with yellow background
If you do not want this behavior, use theadd_subplot()
method or theaxes()
function instead.
Keyword arguments:
- facecolor:
- The background color of the subplot, which can be any validcolor specifier. See
matplotlib.colors
for moreinformation.- polar:
- A boolean flag indicating whether the subplot plot should bea polar projection. Defaults toFalse.
- projection:
- A string giving the name of a custom projection to be usedfor the subplot. This projection must have been previouslyregistered. See
matplotlib.projections
.
See also
Example:
matplotlib.pyplot.
subplot2grid
(shape,loc,rowspan=1,colspan=1,**kwargs)¶Create a subplot in a grid. The grid is specified byshape, atlocation ofloc, spanningrowspan,colspan cells in eachdirection. The index for loc is 0-based.
subplot2grid(shape,loc,rowspan=1,colspan=1)
is identical to
gridspec=GridSpec(shape[0],shape[1])subplotspec=gridspec.new_subplotspec(loc,rowspan,colspan)subplot(subplotspec)
matplotlib.pyplot.
subplot_tool
(targetfig=None)¶Launch a subplot tool window for a figure.
Amatplotlib.widgets.SubplotTool
instance is returned.
matplotlib.pyplot.
subplots
(nrows=1,ncols=1,sharex=False,sharey=False,squeeze=True,subplot_kw=None,gridspec_kw=None,**fig_kw)¶Create a figure and a set of subplots
This utility wrapper makes it convenient to create common layouts ofsubplots, including the enclosing figure object, in a single call.
Parameters: | nrows, ncols : int, optional, default: 1
sharex, sharey : bool or {‘none’, ‘all’, ‘row’, ‘col’}, default: False
squeeze : bool, optional, default: True
subplot_kw : dict, optional
gridspec_kw : dict, optional
**fig_kw :
|
---|---|
Returns: | fig : ax : Axes object or array of Axes objects.
|
Examples
First create some toy data:
>>>x=np.linspace(0,2*np.pi,400)>>>y=np.sin(x**2)
Creates just a figure and only one subplot
>>>fig,ax=plt.subplots()>>>ax.plot(x,y)>>>ax.set_title('Simple plot')
Creates two subplots and unpacks the output array immediately
>>>f,(ax1,ax2)=plt.subplots(1,2,sharey=True)>>>ax1.plot(x,y)>>>ax1.set_title('Sharing Y axis')>>>ax2.scatter(x,y)
Creates four polar axes, and accesses them through the returned array
>>>fig,axes=plt.subplots(2,2,subplot_kw=dict(polar=True))>>>axes[0,0].plot(x,y)>>>axes[1,1].scatter(x,y)
Share a X axis with each column of subplots
>>>plt.subplots(2,2,sharex='col')
Share a Y axis with each row of subplots
>>>plt.subplots(2,2,sharey='row')
Share both X and Y axes with all subplots
>>>plt.subplots(2,2,sharex='all',sharey='all')
Note that this is the same as
>>>plt.subplots(2,2,sharex=True,sharey=True)
matplotlib.pyplot.
subplots_adjust
(*args,**kwargs)¶Tune the subplot layout.
call signature:
subplots_adjust(left=None,bottom=None,right=None,top=None,wspace=None,hspace=None)
The parameter meanings (and suggested defaults) are:
left=0.125# the left side of the subplots of the figureright=0.9# the right side of the subplots of the figurebottom=0.1# the bottom of the subplots of the figuretop=0.9# the top of the subplots of the figurewspace=0.2# the amount of width reserved for blank space between subplots,# expressed as a fraction of the average axis widthhspace=0.2# the amount of height reserved for white space between subplots,# expressed as a fraction of the average axis height
The actual defaults are controlled by the rc file
matplotlib.pyplot.
summer
()¶set the default colormap to summer and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
suptitle
(*args,**kwargs)¶Add a centered title to the figure.
kwargs arematplotlib.text.Text
properties. Using figurecoordinates, the defaults are:
- x:0.5
- The x location of the text in figure coords
- y:0.98
- The y location of the text in figure coords
- horizontalalignment:‘center’
- The horizontal alignment of the text
- verticalalignment:‘top’
- The vertical alignment of the text
If thefontproperties
keyword argument is given then thercParams defaults forfontsize
(figure.titlesize
) andfontweight
(figure.titleweight
) will be ignored in favourof theFontProperties
defaults.
Amatplotlib.text.Text
instance is returned.
Example:
fig.suptitle('this is the figure title',fontsize=12)
matplotlib.pyplot.
switch_backend
(newbackend)¶Switch the default backend. This feature isexperimental, andis only expected to work switching to an image backend. e.g., ifyou have a bunch of PostScript scripts that you want to run froman interactive ipython session, you may want to switch to the PSbackend before running them to avoid having a bunch of GUI windowspopup. If you try to interactively switch from one GUI backend toanother, you will explode.
Calling this command will close all open windows.
matplotlib.pyplot.
table
(**kwargs)¶Add a table to the current axes.
Call signature:
table(cellText=None,cellColours=None,cellLoc='right',colWidths=None,rowLabels=None,rowColours=None,rowLoc='left',colLabels=None,colColours=None,colLoc='center',loc='bottom',bbox=None):
Returns amatplotlib.table.Table
instance. EithercellText
orcellColours
must be provided. For finer grained control overtables, use theTable
class and add it tothe axes withadd_table()
.
Thanks to John Gill for providing the class and table.
kwargs control theTable
properties:
Property Description agg_filter
unknown alpha
float (0.0 transparent through 1.0 opaque) animated
[True | False] axes
an Axes
instanceclip_box
a matplotlib.transforms.Bbox
instanceclip_on
[True | False] clip_path
[ ( Path
,Transform
) |Patch
| None ]contains
a callable function figure
a matplotlib.figure.Figure
instancefontsize
a float in points gid
an id string label
string or anything printable with ‘%s’ conversion. path_effects
unknown picker
[None|float|boolean|callable] rasterized
[True | False | None] sketch_params
unknown snap
unknown transform
Transform
instanceurl
a url string visible
[True | False] zorder
any number
matplotlib.pyplot.
text
(x,y,s,fontdict=None,withdash=False,**kwargs)¶Add text to the axes.
Add text in strings
to axis at locationx
,y
, datacoordinates.
Parameters: | x, y : scalars
s : string
fontdict : dictionary, optional, default: None
withdash : boolean, optional, default: False
|
---|---|
Other Parameters: | |
kwargs :
|
Examples
Individual keyword arguments can be used to override any givenparameter:
>>>text(x,y,s,fontsize=12)
The default transform specifies that text is in data coords,alternatively, you can specify text in axis coords (0,0 islower-left and 1,1 is upper-right). The example below placestext in the center of the axes:
>>>text(0.5,0.5,'matplotlib',horizontalalignment='center',...verticalalignment='center',...transform=ax.transAxes)
You can put a rectangular box around the text instance (e.g., toset a background color) by using the keywordbbox
.bbox
isa dictionary ofRectangle
properties. For example:
>>>text(x,y,s,bbox=dict(facecolor='red',alpha=0.5))
matplotlib.pyplot.
thetagrids
(*args,**kwargs)¶Get or set the theta locations of the gridlines in a polar plot.
If no arguments are passed, return a tuple (lines,labels)wherelines is an array of radial gridlines(Line2D
instances) andlabels is anarray of tick labels (Text
instances):
lines,labels=thetagrids()
Otherwise the syntax is:
lines,labels=thetagrids(angles,labels=None,fmt='%d',frac=1.1)
set the angles at which to place the theta grids (these gridlinesare equal along the theta dimension).
angles is in degrees.
labels, if notNone, is a len(angles) list of strings of thelabels to use at each angle.
Iflabels isNone, the labels will befmt%angle
.
frac is the fraction of the polar axes radius at which to placethe label (1 is the edge). e.g., 1.05 is outside the axes and 0.95is inside the axes.
Return value is a list of tuples (lines,labels):
Note that on input, thelabels argument is a list of strings,and on output it is a list ofText
instances.
Examples:
# set the locations of the radial gridlines and labelslines,labels=thetagrids(range(45,360,90))# set the locations and labels of the radial gridlines and labelslines,labels=thetagrids(range(45,360,90),('NE','NW','SW','SE'))
matplotlib.pyplot.
tick_params
(axis='both',**kwargs)¶Change the appearance of ticks and tick labels.
Parameters: | axis : {‘x’, ‘y’, ‘both’}, optional
|
---|---|
Other Parameters: | |
axis : {‘x’, ‘y’, ‘both’}
reset : bool
which : {‘major’, ‘minor’, ‘both’}
direction : {‘in’, ‘out’, ‘inout’}
length : float
width : float
color : color
pad : float
labelsize : float or str
labelcolor : color
colors : color
zorder : float
bottom, top, left, right : bool or {‘on’, ‘off’}
labelbottom, labeltop, labelleft, labelright : bool or {‘on’, ‘off’}
|
Examples
Usage
ax.tick_params(direction='out',length=6,width=2,colors='r')
This will make all major ticks be red, pointing out of the box,and with dimensions 6 points by 2 points. Tick labels willalso be red.
matplotlib.pyplot.
ticklabel_format
(**kwargs)¶Change theScalarFormatter
used bydefault for linear axes.
Optional keyword arguments:
Keyword Description style [ ‘sci’ (or ‘scientific’) | ‘plain’ ]plain turns off scientific notation scilimits (m, n), pair of integers; ifstyleis ‘sci’, scientific notation willbe used for numbers outside the range10`m`:sup: to 10`n`:sup:.Use (0,0) to include all numbers. useOffset [True | False | offset]; if True,the offset will be calculated as needed;if False, no offset will be used; if anumeric offset is specified, it will beused. axis [ ‘x’ | ‘y’ | ‘both’ ] useLocale If True, format the number according tothe current locale. This affects thingssuch as the character used for thedecimal separator. If False, useC-style (English) formatting. Thedefault setting is controlled by theaxes.formatter.use_locale rcparam.
Only the major ticks are affected.If the method is called when theScalarFormatter
is not theFormatter
being used, anAttributeError
will be raised.
matplotlib.pyplot.
tight_layout
(pad=1.08,h_pad=None,w_pad=None,rect=None)¶Automatically adjust subplot parameters to give specified padding.
Parameters:
pad_inches
.matplotlib.pyplot.
title
(s,*args,**kwargs)¶Set a title of the current axes.
Set one of the three available axes titles. The available titles arepositioned above the axes in the center, flush with the left edge,and flush with the right edge.
See also
Seetext()
for adding textto the current axes
Parameters: | label : str
fontdict : dict
loc : {‘center’, ‘left’, ‘right’}, str, optional
|
---|---|
Returns: | text :
|
Other Parameters: | |
kwargs : text properties
|
matplotlib.pyplot.
tricontour
(*args,**kwargs)¶Draw contours on an unstructured triangular grid.tricontour()
andtricontourf()
draw contour lines andfilled contours, respectively. Except as noted, functionsignatures and return values are the same for both versions.
The triangulation can be specified in one of two ways; either:
tricontour(triangulation,...)
where triangulation is amatplotlib.tri.Triangulation
object, or
tricontour(x,y,...)tricontour(x,y,triangles,...)tricontour(x,y,triangles=triangles,...)tricontour(x,y,mask=mask,...)tricontour(x,y,triangles,mask=mask,...)
in which case a Triangulation object will be created. SeeTriangulation
for a explanation ofthese possibilities.
The remaining arguments may be:
tricontour(...,Z)
whereZ is the array of values to contour, one per pointin the triangulation. The level values are chosenautomatically.
tricontour(...,Z,N)
contourN automatically-chosen levels.
tricontour(...,Z,V)
draw contour lines at the values specified in sequenceV,which must be in increasing order.
tricontourf(...,Z,V)
fill the (len(V)-1) regions between the values inV,which must be in increasing order.
tricontour(Z,**kwargs)
Use keyword args to control colors, linewidth, origin, cmap ... seebelow for more details.
C=tricontour(...)
returns aTriContourSet
object.
Optional keyword arguments:
- colors: [None | string | (mpl_colors) ]
IfNone, the colormap specified by cmap will be used.
If a string, like ‘r’ or ‘red’, all levels will be plotted in thiscolor.
If a tuple of matplotlib color args (string, float, rgb, etc),different levels will be plotted in different colors in the orderspecified.
- alpha: float
- The alpha blending value
- cmap: [None | Colormap ]
- A cm
Colormap
instance orNone. Ifcmap isNone andcolors isNone, adefault Colormap is used.- norm: [None | Normalize ]
- A
matplotlib.colors.Normalize
instance forscaling data values to colors. Ifnorm isNone andcolors isNone, the default linear scaling is used.- levels [level0, level1, ..., leveln]
- A list of floating point numbers indicating the levelcurves to draw, in increasing order; e.g., to draw justthe zero contour pass
levels=[0]
- origin: [None | ‘upper’ | ‘lower’ | ‘image’ ]
IfNone, the first value ofZ will correspond to thelower left corner, location (0,0). If ‘image’, the rcvalue for
image.origin
will be used.This keyword is not active ifX andY are specified inthe call to contour.
extent: [None | (x0,x1,y0,y1) ]
Iforigin is notNone, thenextent is interpreted asin
matplotlib.pyplot.imshow()
: it gives the outerpixel boundaries. In this case, the position of Z[0,0]is the center of the pixel, not a corner. Iforigin isNone, then (x0,y0) is the position of Z[0,0], and(x1,y1) is the position of Z[-1,-1].This keyword is not active ifX andY are specified inthe call to contour.
- locator: [None | ticker.Locator subclass ]
- Iflocator is None, the default
MaxNLocator
is used. Thelocator is used to determine the contour levels if theyare not given explicitly via theV argument.- extend: [ ‘neither’ | ‘both’ | ‘min’ | ‘max’ ]
- Unless this is ‘neither’, contour levels are automaticallyadded to one or both ends of the range so that all dataare included. These added ranges are then mapped to thespecial colormap values which default to the ends of thecolormap range, but can be set via
matplotlib.colors.Colormap.set_under()
andmatplotlib.colors.Colormap.set_over()
methods.- xunits,yunits: [None | registered units ]
- Override axis units by specifying an instance of a
matplotlib.units.ConversionInterface
.
tricontour-only keyword arguments:
- linewidths: [None | number | tuple of numbers ]
Iflinewidths isNone, the default width in
lines.linewidth
inmatplotlibrc
is used.If a number, all levels will be plotted with this linewidth.
If a tuple, different levels will be plotted with differentlinewidths in the order specified
- linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’ ]
Iflinestyles isNone, the ‘solid’ is used.
linestyles can also be an iterable of the above stringsspecifying a set of linestyles to be used. If thisiterable is shorter than the number of contour levelsit will be repeated as necessary.
If contour is using a monochrome colormap and the contourlevel is less than 0, then the linestyle specifiedin
contour.negative_linestyle
inmatplotlibrc
will be used.
tricontourf-only keyword arguments:
- antialiased: [True |False ]
- enable antialiasing
Note: tricontourf fills intervals that are closed at the top; thatis, for boundariesz1 andz2, the filled region is:
z1<z<=z2
There is one exception: if the lowest boundary coincides withthe minimum value of thez array, then that minimum valuewill be included in the lowest interval.
Examples:
matplotlib.pyplot.
tricontourf
(*args,**kwargs)¶Draw contours on an unstructured triangular grid.tricontour()
andtricontourf()
draw contour lines andfilled contours, respectively. Except as noted, functionsignatures and return values are the same for both versions.
The triangulation can be specified in one of two ways; either:
tricontour(triangulation,...)
where triangulation is amatplotlib.tri.Triangulation
object, or
tricontour(x,y,...)tricontour(x,y,triangles,...)tricontour(x,y,triangles=triangles,...)tricontour(x,y,mask=mask,...)tricontour(x,y,triangles,mask=mask,...)
in which case a Triangulation object will be created. SeeTriangulation
for a explanation ofthese possibilities.
The remaining arguments may be:
tricontour(...,Z)
whereZ is the array of values to contour, one per pointin the triangulation. The level values are chosenautomatically.
tricontour(...,Z,N)
contourN automatically-chosen levels.
tricontour(...,Z,V)
draw contour lines at the values specified in sequenceV,which must be in increasing order.
tricontourf(...,Z,V)
fill the (len(V)-1) regions between the values inV,which must be in increasing order.
tricontour(Z,**kwargs)
Use keyword args to control colors, linewidth, origin, cmap ... seebelow for more details.
C=tricontour(...)
returns aTriContourSet
object.
Optional keyword arguments:
- colors: [None | string | (mpl_colors) ]
IfNone, the colormap specified by cmap will be used.
If a string, like ‘r’ or ‘red’, all levels will be plotted in thiscolor.
If a tuple of matplotlib color args (string, float, rgb, etc),different levels will be plotted in different colors in the orderspecified.
- alpha: float
- The alpha blending value
- cmap: [None | Colormap ]
- A cm
Colormap
instance orNone. Ifcmap isNone andcolors isNone, adefault Colormap is used.- norm: [None | Normalize ]
- A
matplotlib.colors.Normalize
instance forscaling data values to colors. Ifnorm isNone andcolors isNone, the default linear scaling is used.- levels [level0, level1, ..., leveln]
- A list of floating point numbers indicating the levelcurves to draw, in increasing order; e.g., to draw justthe zero contour pass
levels=[0]
- origin: [None | ‘upper’ | ‘lower’ | ‘image’ ]
IfNone, the first value ofZ will correspond to thelower left corner, location (0,0). If ‘image’, the rcvalue for
image.origin
will be used.This keyword is not active ifX andY are specified inthe call to contour.
extent: [None | (x0,x1,y0,y1) ]
Iforigin is notNone, thenextent is interpreted asin
matplotlib.pyplot.imshow()
: it gives the outerpixel boundaries. In this case, the position of Z[0,0]is the center of the pixel, not a corner. Iforigin isNone, then (x0,y0) is the position of Z[0,0], and(x1,y1) is the position of Z[-1,-1].This keyword is not active ifX andY are specified inthe call to contour.
- locator: [None | ticker.Locator subclass ]
- Iflocator is None, the default
MaxNLocator
is used. Thelocator is used to determine the contour levels if theyare not given explicitly via theV argument.- extend: [ ‘neither’ | ‘both’ | ‘min’ | ‘max’ ]
- Unless this is ‘neither’, contour levels are automaticallyadded to one or both ends of the range so that all dataare included. These added ranges are then mapped to thespecial colormap values which default to the ends of thecolormap range, but can be set via
matplotlib.colors.Colormap.set_under()
andmatplotlib.colors.Colormap.set_over()
methods.- xunits,yunits: [None | registered units ]
- Override axis units by specifying an instance of a
matplotlib.units.ConversionInterface
.
tricontour-only keyword arguments:
- linewidths: [None | number | tuple of numbers ]
Iflinewidths isNone, the default width in
lines.linewidth
inmatplotlibrc
is used.If a number, all levels will be plotted with this linewidth.
If a tuple, different levels will be plotted with differentlinewidths in the order specified
- linestyles: [None | ‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’ ]
Iflinestyles isNone, the ‘solid’ is used.
linestyles can also be an iterable of the above stringsspecifying a set of linestyles to be used. If thisiterable is shorter than the number of contour levelsit will be repeated as necessary.
If contour is using a monochrome colormap and the contourlevel is less than 0, then the linestyle specifiedin
contour.negative_linestyle
inmatplotlibrc
will be used.
tricontourf-only keyword arguments:
- antialiased: [True |False ]
- enable antialiasing
Note: tricontourf fills intervals that are closed at the top; thatis, for boundariesz1 andz2, the filled region is:
z1<z<=z2
There is one exception: if the lowest boundary coincides withthe minimum value of thez array, then that minimum valuewill be included in the lowest interval.
Examples:
matplotlib.pyplot.
tripcolor
(*args,**kwargs)¶Create a pseudocolor plot of an unstructured triangular grid.
The triangulation can be specified in one of two ways; either:
tripcolor(triangulation,...)
where triangulation is amatplotlib.tri.Triangulation
object, or
tripcolor(x,y,...)tripcolor(x,y,triangles,...)tripcolor(x,y,triangles=triangles,...)tripcolor(x,y,mask=mask,...)tripcolor(x,y,triangles,mask=mask,...)
in which case a Triangulation object will be created. SeeTriangulation
for a explanation of thesepossibilities.
The next argument must beC, the array of color values, eitherone per point in the triangulation if color values are defined atpoints, or one per triangle in the triangulation if color valuesare defined at triangles. If there are the same number of pointsand triangles in the triangulation it is assumed that colorvalues are defined at points; to force the use of color values attriangles use the kwargfacecolors*=C instead of just *C.
shading may be ‘flat’ (the default) or ‘gouraud’. Ifshadingis ‘flat’ and C values are defined at points, the color valuesused for each triangle are from the mean C of the triangle’sthree points. Ifshading is ‘gouraud’ then color values must bedefined at points.
The remaining kwargs are the same as forpcolor()
.
Example:
matplotlib.pyplot.
triplot
(*args,**kwargs)¶Draw a unstructured triangular grid as lines and/or markers.
The triangulation to plot can be specified in one of two ways;either:
triplot(triangulation,...)
where triangulation is amatplotlib.tri.Triangulation
object, or
triplot(x,y,...)triplot(x,y,triangles,...)triplot(x,y,triangles=triangles,...)triplot(x,y,mask=mask,...)triplot(x,y,triangles,mask=mask,...)
in which case a Triangulation object will be created. SeeTriangulation
for a explanation of thesepossibilities.
The remaining args and kwargs are the same as forplot()
.
Return a list of 2Line2D
containingrespectively:
- the lines plotted for triangles edges
- the markers plotted for triangles nodes
Example:
matplotlib.pyplot.
twinx
(ax=None)¶Make a second axes that shares thex-axis. The new axes willoverlayax (or the current axes ifax isNone). The ticksforax2 will be placed on the right, and theax2 instance isreturned.
See also
examples/api_examples/two_scales.py
matplotlib.pyplot.
twiny
(ax=None)¶Make a second axes that shares they-axis. The new axis willoverlayax (or the current axes ifax isNone). The ticksforax2 will be placed on the top, and theax2 instance isreturned.
matplotlib.pyplot.
uninstall_repl_displayhook
()¶Uninstalls the matplotlib display hook.
matplotlib.pyplot.
violinplot
(dataset,positions=None,vert=True,widths=0.5,showmeans=False,showextrema=True,showmedians=False,points=100,bw_method=None,hold=None,data=None)¶Make a violin plot.
Make a violin plot for each column ofdataset or each vector insequencedataset. Each filled area extends to represent theentire data range, with optional lines at the mean, the median,the minimum, and the maximum.
Parameters: | dataset : Array or a sequence of vectors.
positions : array-like, default = [1, 2, ..., n]
vert : bool, default = True.
widths : array-like, default = 0.5
showmeans : bool, default = False
showextrema : bool, default = True
showmedians : bool, default = False
points : scalar, default = 100
bw_method : str, scalar or callable, optional
|
---|---|
Returns: | result : dict
Note In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
|
matplotlib.pyplot.
viridis
()¶set the default colormap to viridis and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
vlines
(x,ymin,ymax,colors='k',linestyles='solid',label='',hold=None,data=None,**kwargs)¶Plot vertical lines.
Plot vertical lines at eachx
fromymin
toymax
.
Parameters: | x : scalar or 1D array_like
ymin, ymax : scalar or 1D array_like
colors : array_like of colors, optional, default: ‘k’ linestyles : [‘solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’], optional label : string, optional, default: ‘’ |
---|---|
Returns: | lines : |
Other Parameters: | |
kwargs : |
See also
hlines
Examples
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
waitforbuttonpress
(*args,**kwargs)¶Blocking call to interact with the figure.
This will return True is a key was pressed, False if a mousebutton was pressed and None iftimeout was reached withouteither being pressed.
Iftimeout is negative, does not timeout.
matplotlib.pyplot.
winter
()¶set the default colormap to winter and apply to current image if any.See help(colormaps) for more information
matplotlib.pyplot.
xcorr
(x,y,normed=True,detrend=<function detrend_none>,usevlines=True,maxlags=10,hold=None,data=None,**kwargs)¶Plot the cross correlation betweenx andy.
The correlation with lag k is defined as sum_n x[n+k] * conj(y[n]).
Parameters: | x : sequence of scalars of length n y : sequence of scalars of length n hold : boolean, optional,deprecated, default: True detrend : callable, optional, default:
normed : boolean, optional, default: True
usevlines : boolean, optional, default: True
maxlags : integer, optional, default: 10
|
---|---|
Returns: | (lags, c, line, b) : where: |
Other Parameters: | |
linestyle :
marker : string, optional, default: ‘o’ |
Notes
The cross correlation is performed withnumpy.correlate()
withmode
= 2.
Note
In addition to the above described arguments, this function can take adata keyword argument. If such adata argument is given, thefollowing arguments are replaced bydata[<arg>]:
matplotlib.pyplot.
xkcd
(scale=1,length=100,randomness=2)¶Turns onxkcd sketch-style drawing mode.This will only have effect on things drawn after this function iscalled.
For best results, the “Humor Sans” font should be installed: it isnot included with matplotlib.
Parameters: | scale : float, optional
length : float, optional
randomness : float, optional
|
---|
Notes
This function works by a number of rcParams, so it will probablyoverride others you have set before.
If you want the effects of this function to be temporary, it canbe used as a context manager, for example:
withplt.xkcd():# This figure will be in XKCD-stylefig1=plt.figure()# ...# This figure will be in regular stylefig2=plt.figure()
matplotlib.pyplot.
xlabel
(s,*args,**kwargs)¶Set thex axis label of the current axis.
Default override is:
override={'fontsize':'small','verticalalignment':'top','horizontalalignment':'center'}
See also
text()
matplotlib.pyplot.
xlim
(*args,**kwargs)¶Get or set thex limits of the current axes.
xmin,xmax=xlim()# return the current xlimxlim((xmin,xmax))# set the xlim to xmin, xmaxxlim(xmin,xmax)# set the xlim to xmin, xmax
If you do not specify args, you can pass the xmin and xmax askwargs, e.g.:
xlim(xmax=3)# adjust the max leaving min unchangedxlim(xmin=1)# adjust the min leaving max unchanged
Setting limits turns autoscaling off for the x-axis.
The new axis limits are returned as a length 2 tuple.
matplotlib.pyplot.
xscale
(*args,**kwargs)¶Set the scaling of thex-axis.
call signature:
xscale(scale,**kwargs)
The available scales are: ‘linear’ | ‘log’ | ‘logit’ | ‘symlog’
Different keywords may be accepted, depending on the scale:
‘linear’
‘log’
- basex/basey:
- The base of the logarithm
- nonposx/nonposy: [‘mask’ | ‘clip’ ]
- non-positive values inx ory can be masked asinvalid, or clipped to a very small positive number
- subsx/subsy:
Where to place the subticks between each major tick.Should be a sequence of integers. For example, in a log10scale:
[2,3,4,5,6,7,8,9]
will place 8 logarithmically spaced minor ticks betweeneach major tick.
‘logit’
- nonpos: [‘mask’ | ‘clip’ ]
- values beyond ]0, 1[ can be masked as invalid, or clipped to a numbervery close to 0 or 1
‘symlog’
- basex/basey:
- The base of the logarithm
- linthreshx/linthreshy:
- The range (-x,x) within which the plot is linear (toavoid having the plot go to infinity around zero).
- subsx/subsy:
Where to place the subticks between each major tick.Should be a sequence of integers. For example, in a log10scale:
[2,3,4,5,6,7,8,9]
will place 8 logarithmically spaced minor ticks betweeneach major tick.
- linscalex/linscaley:
- This allows the linear range (-linthresh tolinthresh)to be stretched relative to the logarithmic range. Itsvalue is the number of decades to use for each half of thelinear range. For example, whenlinscale == 1.0 (thedefault), the space used for the positive and negativehalves of the linear range will be equal to one decade inthe logarithmic range.
matplotlib.pyplot.
xticks
(*args,**kwargs)¶Get or set thex-limits of the current tick locations and labels.
# return locs, labels where locs is an array of tick locations and# labels is an array of tick labels.locs,labels=xticks()# set the locations of the xticksxticks(arange(6))# set the locations and labels of the xticksxticks(arange(5),('Tom','Dick','Harry','Sally','Sue'))
The keyword args, if any, areText
properties. For example, to rotate long labels:
xticks(arange(12),calendar.month_name[1:13],rotation=17)
matplotlib.pyplot.
ylabel
(s,*args,**kwargs)¶Set they axis label of the current axis.
Defaults override is:
override={'fontsize':'small','verticalalignment':'center','horizontalalignment':'right','rotation'='vertical':}
See also
text()
matplotlib.pyplot.
ylim
(*args,**kwargs)¶Get or set they-limits of the current axes.
ymin,ymax=ylim()# return the current ylimylim((ymin,ymax))# set the ylim to ymin, ymaxylim(ymin,ymax)# set the ylim to ymin, ymax
If you do not specify args, you can pass theymin andymax askwargs, e.g.:
ylim(ymax=3)# adjust the max leaving min unchangedylim(ymin=1)# adjust the min leaving max unchanged
Setting limits turns autoscaling off for the y-axis.
The new axis limits are returned as a length 2 tuple.
matplotlib.pyplot.
yscale
(*args,**kwargs)¶Set the scaling of they-axis.
call signature:
yscale(scale,**kwargs)
The available scales are: ‘linear’ | ‘log’ | ‘logit’ | ‘symlog’
Different keywords may be accepted, depending on the scale:
‘linear’
‘log’
- basex/basey:
- The base of the logarithm
- nonposx/nonposy: [‘mask’ | ‘clip’ ]
- non-positive values inx ory can be masked asinvalid, or clipped to a very small positive number
- subsx/subsy:
Where to place the subticks between each major tick.Should be a sequence of integers. For example, in a log10scale:
[2,3,4,5,6,7,8,9]
will place 8 logarithmically spaced minor ticks betweeneach major tick.
‘logit’
- nonpos: [‘mask’ | ‘clip’ ]
- values beyond ]0, 1[ can be masked as invalid, or clipped to a numbervery close to 0 or 1
‘symlog’
- basex/basey:
- The base of the logarithm
- linthreshx/linthreshy:
- The range (-x,x) within which the plot is linear (toavoid having the plot go to infinity around zero).
- subsx/subsy:
Where to place the subticks between each major tick.Should be a sequence of integers. For example, in a log10scale:
[2,3,4,5,6,7,8,9]
will place 8 logarithmically spaced minor ticks betweeneach major tick.
- linscalex/linscaley:
- This allows the linear range (-linthresh tolinthresh)to be stretched relative to the logarithmic range. Itsvalue is the number of decades to use for each half of thelinear range. For example, whenlinscale == 1.0 (thedefault), the space used for the positive and negativehalves of the linear range will be equal to one decade inthe logarithmic range.
matplotlib.pyplot.
yticks
(*args,**kwargs)¶Get or set they-limits of the current tick locations and labels.
# return locs, labels where locs is an array of tick locations and# labels is an array of tick labels.locs,labels=yticks()# set the locations of the yticksyticks(arange(6))# set the locations and labels of the yticksyticks(arange(5),('Tom','Dick','Harry','Sally','Sue'))
The keyword args, if any, areText
properties. For example, to rotate long labels:
yticks(arange(12),calendar.month_name[1:13],rotation=45)