matplotlib.axes.Axes.semilogy#
- Axes.semilogy(*args,**kwargs)[source]#
Make a plot with log scaling on the y-axis.
Call signatures:
semilogy([x],y,[fmt],data=None,**kwargs)semilogy([x],y,[fmt],[x2],y2,[fmt2],...,**kwargs)
This is just a thin wrapper around
plotwhich additionally changesthe y-axis to log scaling. All the concepts and parameters of plot canbe used here as well.The additional parametersbase,subs, andnonpositive control they-axis properties. They are just forwarded to
Axes.set_yscale.- Parameters:
- basefloat, default: 10
Base of the y logarithm.
- subsarray-like, optional
The location of the minor yticks. IfNone, reasonable locationsare automatically chosen depending on the number of decades in theplot. See
Axes.set_yscalefor details.- nonpositive{'mask', 'clip'}, default: 'clip'
Non-positive values in y can be masked as invalid, or clipped to avery small positive number.
- **kwargs
All parameters supported by
plot.
- Returns:
- list of
Line2D Objects representing the plotted data.
- list of
Examples usingmatplotlib.axes.Axes.semilogy#
SkewT-logP diagram: using transforms and custom projections
SkewT-logP diagram: using transforms and custom projections
On this page