
matplotlib.ticker¶This module contains classes to support completely configurable ticklocating and formatting. Although the locators know nothing about majoror minor ticks, they are used by the Axis class to support major andminor tick locating and formatting. Generic tick locators andformatters are provided, as well as domain specific custom ones.
The default formatter identifies when the x-data beingplotted is a small range on top of a large off set. Toreduce the chances that the ticklabels overlap the ticksare labeled as deltas from a fixed offset. For example:
ax.plot(np.arange(2000,2010),range(10))
will have tick of 0-9 with an offset of +2e3. If thisis not desired turn off the use of the offset on the defaultformatter:
ax.get_xaxis().get_major_formatter().set_useOffset(False)
set the rcParamaxes.formatter.useoffset=False to turn it offglobally, or set a different formatter.
The Locator class is the base class for all tick locators. The locatorshandle autoscaling of the view limits based on the data limits, and thechoosing of tick locations. A useful semi-automatic tick locator isMultipleLocator. You initialize this with a base, e.g., 10, and itpicks axis limits and ticks that are multiples of your base.
The Locator subclasses defined here are
NullLocatorFixedLocatorIndexLocatorLinearLocatorLogLocatorSymmetricalLogLocatorLogLocator for the part outside of the threshold and add 0 ifinside the limitsMultipleLocatorOldAutoLocatorMaxNLocatorAutoLocatorMaxNLocator with simple defaults. This is the defaulttick locator for most plotting.AutoMinorLocatorLogitLocatorThere are a number of locators specialized for date locations - seethe dates module
You can define your own locator by deriving from Locator. You mustoverride the __call__ method, which returns a sequence of locations,and you will probably want to override the autoscale method to set theview limits from the data limits.
If you want to override the default locator, use one of the above or acustom locator and pass it to the x or y axis instance. The relevantmethods are:
ax.xaxis.set_major_locator(xmajorLocator)ax.xaxis.set_minor_locator(xminorLocator)ax.yaxis.set_major_locator(ymajorLocator)ax.yaxis.set_minor_locator(yminorLocator)
The default minor locator is the NullLocator, e.g., no minor ticks on bydefault.
Tick formatting is controlled by classes derived from Formatter. Theformatter operates on a single tick value and returns a string to theaxis.
NullFormatterIndexFormatterFixedFormatterFuncFormatterStrMethodFormatterformat methodFormatStrFormatterScalarFormatterLogFormatterLogFormatterExponentexponent=log_base(value).LogFormatterMathtextexponent=log_base(value)using Math text.LogFormatterSciNotationLogitFormatterYou can derive your own formatter from the Formatter base class bysimply overriding the__call__ method. The formatter class hasaccess to the axis view and data limits.
To control the major and minor tick label formats, use one of thefollowing methods:
ax.xaxis.set_major_formatter(xmajorFormatter)ax.xaxis.set_minor_formatter(xminorFormatter)ax.yaxis.set_major_formatter(ymajorFormatter)ax.yaxis.set_minor_formatter(yminorFormatter)
Seepylab_examples example code: major_minor_demo1.py for an example of settingmajor and minor ticks. See thematplotlib.dates module formore information and examples of using date locators and formatters.
matplotlib.ticker.TickHelper¶Bases:object
axis = None¶create_dummy_axis(**kwargs)¶set_axis(axis)¶set_bounds(vmin,vmax)¶set_data_interval(vmin,vmax)¶set_view_interval(vmin,vmax)¶matplotlib.ticker.Formatter¶Bases:matplotlib.ticker.TickHelper
Create a string based on a tick value and location.
fix_minus(s)¶Some classes may want to replace a hyphen for minus with theproper unicode symbol (U+2212) for typographical correctness.The default is to not replace it.
Note, if you use this method, e.g., informat_data() orcall, you probably don’t want to use it forformat_data_short() since the toolbar uses this forinteractive coord reporting and I doubt we can expect GUIsacross platforms will handle the unicode correctly. So fornow the classes that overridefix_minus() should have anexplicitformat_data_short() method
format_data(value)¶Returns the full string representation of the value with theposition unspecified.
format_data_short(value)¶Return a short string version of the tick value.
Defaults to the position-independent long value.
get_offset()¶locs = []¶set_locs(locs)¶matplotlib.ticker.FixedFormatter(seq)¶Bases:matplotlib.ticker.Formatter
Return fixed strings for tick labels based only on position, notvalue.
Set the sequence of strings that will be used for labels.
get_offset()¶set_offset_string(ofs)¶matplotlib.ticker.NullFormatter¶Bases:matplotlib.ticker.Formatter
Always return the empty string.
matplotlib.ticker.FuncFormatter(func)¶Bases:matplotlib.ticker.Formatter
Use a user-defined function for formatting.
The function should take in two inputs (a tick valuex and apositionpos), and return a string containing the correspondingtick label.
matplotlib.ticker.FormatStrFormatter(fmt)¶Bases:matplotlib.ticker.Formatter
Use an old-style (‘%’ operator) format string to format the tick.
The format string should have a single variable format (%) in it.It will be applied to the value (not the position) of the tick.
matplotlib.ticker.StrMethodFormatter(fmt)¶Bases:matplotlib.ticker.Formatter
Use a new-style format string (as used bystr.format())to format the tick.
The field used for the value must be labeledx and the field usedfor the position must be labeledpos.
matplotlib.ticker.ScalarFormatter(useOffset=None,useMathText=None,useLocale=None)¶Bases:matplotlib.ticker.Formatter
Format tick values as a number.
Tick value is interpreted as a plain old number. IfuseOffset==True and the data range is much smaller than the dataaverage, then an offset will be determined such that the tick labelsare meaningful. Scientific notation is used fordata<10^-n ordata>=10^m, wheren andm are the power limits setusingset_powerlimits((n,m)). The defaults for these arecontrolled by theaxes.formatter.limits rc parameter.
fix_minus(s)¶Replace hyphens with a unicode minus.
format_data(value)¶Return a formatted string representation of a number.
format_data_short(value)¶Return a short formatted string representation of a number.
get_offset()¶Return scientific notation, plus offset.
get_useLocale()¶get_useOffset()¶pprint_val(x)¶set_locs(locs)¶Set the locations of the ticks.
set_powerlimits(lims)¶Sets size thresholds for scientific notation.
lims is a two-element sequence containing the powers of 10that determine the switchover threshold. Numbers below10**lims[0] and above10**lims[1] will be displayed inscientific notation.
For example,formatter.set_powerlimits((-3,4)) sets thepre-2007 default in which scientific notation is used fornumbers less than 1e-3 or greater than 1e4.
See also
Methodset_scientific()
set_scientific(b)¶Turn scientific notation on or off.
See also
Methodset_powerlimits()
set_useLocale(val)¶set_useOffset(val)¶useLocale¶useOffset¶matplotlib.ticker.LogFormatter(base=10.0,labelOnlyBase=False,minor_thresholds=None,linthresh=None)¶Bases:matplotlib.ticker.Formatter
Base class for formatting ticks on a log or symlog scale.
It may be instantiated directly, or subclassed.
| Parameters: | base : float, optional, default: 10.
labelOnlyBase : bool, optional, default: False
minor_thresholds : (subset, all), optional, default: (1, 0.4)
linthresh : None or float, optional, default: None
|
|---|
Notes
Theset_locs method must be called to enable the subsettinglogic controlled by theminor_thresholds parameter.
In some cases such as the colorbar, there is no distinction betweenmajor and minor ticks; the tick locations might be set manually,or by a locator that puts ticks at integer powers of base andat intermediate locations. For this situation, disable theminor_thresholds logic by usingminor_thresholds=(np.inf,np.inf),so that all ticks will be labeled.
To disable labeling of minor ticks when ‘labelOnlyBase’ is False,useminor_thresholds=(0,0). This is the default for the“classic” style.
Examples
To label a subset of minor ticks when the view limits span upto 2 decades, and all of the ticks when zoomed in to 0.5 decadesor less, useminor_thresholds=(2,0.5).
To label all minor ticks when the view limits span up to 1.5decades, useminor_thresholds=(1.5,1.5).
base(base)¶change thebase for labeling.
Warning
Should always match the base used forLogLocator
format_data(value)¶format_data_short(value)¶Return a short formatted string representation of a number.
label_minor(labelOnlyBase)¶Switch minor tick labeling on or off.
| Parameters: | labelOnlyBase : bool
|
|---|
pprint_val(x,d)¶set_locs(locs=None)¶Use axis view limits to control which ticks are labeled.
Thelocs parameter is ignored in the present algorithm.
matplotlib.ticker.LogFormatterExponent(base=10.0,labelOnlyBase=False,minor_thresholds=None,linthresh=None)¶Bases:matplotlib.ticker.LogFormatter
Format values for log axis usingexponent=log_base(value).
matplotlib.ticker.LogFormatterMathtext(base=10.0,labelOnlyBase=False,minor_thresholds=None,linthresh=None)¶Bases:matplotlib.ticker.LogFormatter
Format values for log axis usingexponent=log_base(value).
matplotlib.ticker.Locator¶Bases:matplotlib.ticker.TickHelper
Determine the tick locations;
Note, you should not use the same locator between differentAxis because the locator stores references tothe Axis data and view limits
MAXTICKS = 1000¶autoscale()¶autoscale the view limits
pan(numsteps)¶Pan numticks (can be positive or negative)
raise_if_exceeds(locs)¶raise a RuntimeError if Locator attempts to create more thanMAXTICKS locs
refresh()¶refresh internal information based on current lim
set_params(**kwargs)¶Do nothing, and rase a warning. Any locator class not supporting theset_params() function will call this.
tick_values(vmin,vmax)¶Return the values of the located ticks givenvmin andvmax.
Note
To get tick locations with the vmin and vmax values definedautomatically for the associatedaxis simply callthe Locator instance:
>>>print((type(loc)))<type 'Locator'>>>>print((loc()))[1, 2, 3, 4]
view_limits(vmin,vmax)¶select a scale for the range from vmin to vmax
Normally this method is overridden by subclasses tochange locator behaviour.
zoom(direction)¶Zoom in/out on axis; if direction is >0 zoom in, else zoom out
matplotlib.ticker.IndexLocator(base,offset)¶Bases:matplotlib.ticker.Locator
Place a tick on every multiple of some base number of pointsplotted, e.g., on every 5th point. It is assumed that you are doingindex plotting; i.e., the axis is 0, len(data). This is mainlyuseful for x ticks.
place ticks on the i-th data points where (i-offset)%base==0
set_params(base=None,offset=None)¶Set parameters within this locator
tick_values(vmin,vmax)¶matplotlib.ticker.FixedLocator(locs,nbins=None)¶Bases:matplotlib.ticker.Locator
Tick locations are fixed. If nbins is not None,the array of possible positions will be subsampled tokeep the number of ticks <= nbins +1.The subsampling will be done so as to include the smallestabsolute value; for example, if zero is included in thearray of possibilities, then it is guaranteed to be one ofthe chosen ticks.
set_params(nbins=None)¶Set parameters within this locator.
tick_values(vmin,vmax)¶”Return the locations of the ticks.
Note
Because the values are fixed, vmin and vmax are not used in thismethod.
matplotlib.ticker.NullLocator¶Bases:matplotlib.ticker.Locator
No ticks
tick_values(vmin,vmax)¶”Return the locations of the ticks.
Note
Because the values are Null, vmin and vmax are not used in thismethod.
matplotlib.ticker.LinearLocator(numticks=None,presets=None)¶Bases:matplotlib.ticker.Locator
Determine the tick locations
The first time this function is called it will try to set thenumber of ticks to make a nice tick partitioning. Thereafter thenumber of ticks will be fixed so that interactive navigation willbe nice
Use presets to set locs based on lom. A dict mapping vmin, vmax->locs
set_params(numticks=None,presets=None)¶Set parameters within this locator.
tick_values(vmin,vmax)¶view_limits(vmin,vmax)¶Try to choose the view limits intelligently
matplotlib.ticker.LogLocator(base=10.0,subs=(1.0,),numdecs=4,numticks=None)¶Bases:matplotlib.ticker.Locator
Determine the tick locations for log axes
Place ticks on the locations : subs[j] * base**i
| Parameters: | subs : None, string, or sequence of float, optional, default (1.0,)
|
|---|
base(base)¶set the base of the log scaling (major tick every base**i, i integer)
nonsingular(vmin,vmax)¶set_params(base=None,subs=None,numdecs=None,numticks=None)¶Set parameters within this locator.
subs(subs)¶set the minor ticks for the log scaling every base**i*subs[j]
tick_values(vmin,vmax)¶view_limits(vmin,vmax)¶Try to choose the view limits intelligently
matplotlib.ticker.AutoLocator¶matplotlib.ticker.MultipleLocator(base=1.0)¶Bases:matplotlib.ticker.Locator
Set a tick on every integer that is multiple of base in theview interval
set_params(base)¶Set parameters within this locator.
tick_values(vmin,vmax)¶view_limits(dmin,dmax)¶Set the view limits to the nearest multiples of base thatcontain the data
matplotlib.ticker.MaxNLocator(*args,**kwargs)¶Bases:matplotlib.ticker.Locator
Select no more than N intervals at nice locations.
Keyword args:
'auto', the number of bins will beautomatically determined based on the length of the axis.min_n_ticks integers are found within theview limits.rcParams['axes.autolimit_mode'] is'round_numbers'.Ifprune=='lower', the smallest tick willbe removed. Ifprune=='upper', the largest tick will beremoved. Ifprune=='both', the largest and smallest tickswill be removed. Ifprune==None, no ticks will be removed.nbins andinteger constraints if necessary toobtain this minimum number of ticks.bin_boundaries(vmin,vmax)¶Deprecated since version 2.0:The bin_boundaries function was deprecated in version 2.0.
default_params = {'nbins': 10, 'steps': None, 'integer': False, 'symmetric': False, 'prune': None, 'min_n_ticks': 2}¶set_params(**kwargs)¶Set parameters within this locator.
tick_values(vmin,vmax)¶view_limits(dmin,dmax)¶matplotlib.ticker.AutoMinorLocator(n=None)¶Bases:matplotlib.ticker.Locator
Dynamically find minor tick positions based on the positions ofmajor ticks. Assumes the scale is linear and major ticks areevenly spaced.
n is the number of subdivisions of the interval betweenmajor ticks; e.g., n=2 will place a single minor tick midwaybetween major ticks.
Ifn is omitted or None, it will be set to 5 or 4.
tick_values(vmin,vmax)¶matplotlib.ticker.SymmetricalLogLocator(transform=None,subs=None,linthresh=None,base=None)¶Bases:matplotlib.ticker.Locator
Determine the tick locations for symmetric log axes
place ticks on the location= base**i*subs[j]
set_params(subs=None,numticks=None)¶Set parameters within this locator.
tick_values(vmin,vmax)¶view_limits(vmin,vmax)¶Try to choose the view limits intelligently