Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Tangential Circle


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook
TangentialCircle

The tangential circle of areference triangle is thecircumcircle of thetangential triangle. Its center isKimberling centerX_(26), which has center function

 alpha_(26)=a[-a^2cos(2A)+b^2cos(2B)+c^2cos(2C)]
(1)

(Kimberling 1994) and its radius is

 R_T=R/(4|cosAcosBcosC|),
(2)

whereR is thecircumradius of thereference triangle.

It hascircle function

 l=(a^2bc)/((a^2+b^2-c^2)(a^2-b^2+c^2)),
(3)

corresponding to thecircumcenterO of thereference triangle (X_3).

The tangential circle passes through Kimberling centerX_(2079).

It is orthogonal to theStevanović circle.


See also

Central Circle,TangentialTriangle

Explore with Wolfram|Alpha

References

Kimberling, C. "Central Points and Central Lines in the Plane of a Triangle."Math. Mag.67, 163-187, 1994.

Referenced on Wolfram|Alpha

Tangential Circle

Cite this as:

Weisstein, Eric W. "Tangential Circle."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/TangentialCircle.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp