Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Tangent


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook
Tangent

The tangent function is defined by

 tanx=(sinx)/(cosx),
(1)

wheresinx is thesine function andcosx is thecosine function. The notationtgx is sometimes also used (Gradshteyn and Ryzhik 2000, p. xxix).

TangentDiagram

The common schoolbook definition of the tangent of an angletheta in aright triangle (which is equivalent to the definition just given) is as the ratio of the side lengths opposite to the angle and adjacent the angle, i.e.,

 tantheta=(opposite)/(adjacent).
(2)

A convenient mnemonic for remembering the definition of thesine, cosine, and tangent isSOHCAHTOA (sine equals opposite over hypotenuse,cosine equals adjacent over hypotenuse, tangent equals opposite over adjacent).

The word "tangent" also has an important related meaning as aline orplane which touches a given curve or solid at a single point. These geometrical objects are then called atangent line ortangent plane, respectively.

TangentReIm
TanContours

The definition of the tangent function can be extended to complex argumentsz using the definition

tanz=(i(e^(-iz)-e^(iz)))/(e^(-iz)+e^(iz))
(3)
=(e^(iz)-e^(-iz))/(i(e^(iz)+e^(-iz)))
(4)
=(i(1-e^(2iz)))/(1+e^(2iz))
(5)
=(e^(2iz)-1)/(i(e^(2iz)+1)),
(6)

wheree is the base of thenatural logarithm andi is theimaginary number. The tangent is implemented in theWolfram Language asTan[z].

A related function known as thehyperbolic tangentis similarly defined,

 tanhz=(e^z-e^(-z))/(e^z+e^(-z)).
(7)

An important tangent identity is given by

 tan^2theta+1=sec^2theta.
(8)

Angle addition, subtraction, half-angle, and multiple-angle formulas are given by

tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta)
(9)
tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)
(10)
tan(2alpha)=(2tanalpha)/(1-tan^2alpha)
(11)
tan(nalpha)=(tan[(n-1)alpha]+tanalpha)/(1-tan[(n-1)alpha]tanalpha)
(12)
tan(alpha/2)=(sinalpha)/(1+cosalpha)
(13)
=(1-cosalpha)/(sinalpha)
(14)
=(tanalphasinalpha)/(tanalpha+sinalpha).
(15)

Thesine andcosine functionscan conveniently be expressed in terms of a tangent as

cost=(1-tan^2(1/2t))/(1+tan^2(1/2t))
(16)
sint=(2tan(1/2t))/(1+tan^2(1/2t)),
(17)

which can be particularly convenient in polynomial computations such asGröbner basis since it reduces the number of equations compared with explicit inclusion ofcost andsint together with the additional relationcos^2t+sin^2t-1=0 (Trott 2006, p. 39).

These lead to the pretty identity

 tan(x+1/4pi)=(1+tanx)/(1-tanx).
(18)

There is also a beautiful angle addition identity for three variables,

 tan(alpha+beta+gamma)=(tanalpha+tanbeta+tangamma-tanalphatanbetatangamma)/(1-tanbetatangamma-tangammatanalpha-tanalphatanbeta).
(19)

Another tangent identity is

tan(nx)=(sum_(k=0)^(n)(-1)^k(n; 2k+1)t^(2k+1))/(sum_(k=0)^(n)(-1)^k(n; 2k)t^(2k))
(20)
=(1/2i(1-it)^n-(1+it)^n)/(1/2(1-it)^n+(1+it)^n)
(21)
=1/i((1+it)^n-(1-it)^n)/((1+it)^n+(1-it)^n),
(22)

wheret=tanx (Beeleret al.1972). Written explicitly,

 tan(nx)=(2i(1-itant)^n)/((1-itant)^n+(1+itant)^n)-i,
(23)

This gives the first few expansions as

tanx=t
(24)
tan(2x)=(2t)/(1-t^2)
(25)
tan(3x)=(3t-t^3)/(1-3t^2)
(26)
tan(4x)=(4t-4t^3)/(1-6t^2+r^4)
(27)
tan(5x)=(5t-10t^3+t^5)/(1-10t^2+5t^4)
(28)

(OEISA034867 andA034839).

A beautiful formula that generalizes the tangent angle addition formula, (27),and (28) is given by

 tan(sum_(n=1)^Ntheta_n)=i(product_(n=1)^(N)(1-itantheta_n)-product_(n=1)^(N)(itantheta_n+1))/(product_(n=1)^(N)(itantheta_n+1)+product_(n=1)^(N)(1-itantheta_n))
(29)

(Szmulowicz 2005).

There are a number of simple but interesting tangent identities based on those given above, including

 tan(A+60 degrees)tan(A-60 degrees)+tanAtan(A+60 degrees)+tanAtan(A-60 degrees)=-3
(30)

(Borchardt and Perrott 1930).

TheMaclaurin series valid for-pi/2<x<pi/2 for the tangent function is

tanx=sum_(n=1)^(infty)((-1)^(n-1)2^(2n)(2^(2n)-1)B_(2n))/((2n)!)x^(2n-1)
(31)
=x+1/3x^3+2/(15)x^5+(17)/(315)x^7+(62)/(2835)x^9+...
(32)

(OEISA002430 andA036279), whereB_n is aBernoulli number.

tanx isirrational for anyrationalx!=0, which can be proved by writingtanx as acontinued fraction as

 tanx=x/(1-(x^2)/(3-(x^2)/(5-(x^2)/(7-...))))
(33)

(Wall 1948, p. 349; Olds 1963, p. 138) and

 tanx=1/(1/x-1/(3/x-1/(5/x-1/(7/x-...)))).
(34)

both due to Lambert.

An interesting identity involving theproduct of tangentsis

 product_(k=1)^(|_(n-1)/2_|)tan((kpi)/n)={sqrt(n)   for n odd; 1   for n even,
(35)

where|_x_| is thefloor function.

The equation

 x=tanx,
(36)

which is equivalent totanc(x)=1, wheretanc(x) is thetanc function, does not have simple closed-form solutions.

The difference between consecutive solutions gets closer and closer topi for higher order solutions. The functiontancx=(tanx)/x is sometimes known as thetanc function.


See also

Alternating Permutation,Cosine,Cotangent,Hyperbolic Tangent,Inverse Tangent,Law of Tangents,Morrie's Law,Sine,SOHCAHTOA,Tanc Function,Tangent Line,Tangent Plane,Tangent Vector,Vardi's IntegralExplore this topic in the MathWorld classroom

Related Wolfram sites

http://functions.wolfram.com/ElementaryFunctions/Tan/

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Circular Functions." §4.3 inHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 71-79, 1972.Beeler, M.et al.Item 16 in Beeler, M.; Gosper, R. W.; and Schroeppel, R.HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 9, Feb. 1972.http://www.inwap.com/pdp10/hbaker/hakmem/recurrence.html#item16.Beyer, W. H.CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 226, 1987.Borchardt, W. G. and Perrott, A. D. Ex. 33 inA New Trigonometry for Schools. London: G. Bell, 1930.Gradshteyn, I. S. and Ryzhik, I. M.Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.Jeffrey, A. "Trigonometric Identities." §2.4 inHandbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, pp. 111-117, 2000.Olds, C. D.Continued Fractions. New York: Random House, 1963.Sloane, N. J. A. SequencesA002430/M2100,A034839,A034867,A036279, andA115365 in "The On-Line Encyclopedia of Integer Sequences."Szmulowicz, F. "New Analytic and Computational Formalism for the Band Structure ofN-Layer Photonic Crystals."Phys. Lett. A345, 469-477, 2005.Spanier, J. and Oldham, K. B. "The Tangenttan(x) and Cotangentcot(x) Functions." Ch. 34 inAn Atlas of Functions. Washington, DC: Hemisphere, pp. 319-330, 1987.Tropfke, J. Teil IB, §2. "Die Begriffe von Tangens und Kotangens eines Winkels." InGeschichte der Elementar-Mathematik in systematischer Darstellung mit besonderer Berücksichtigung der Fachwörter, fünfter Band, zweite aufl. Berlin and Leipzig, Germany: de Gruyter, pp. 23-28, 1923.Trott, M.The Mathematica GuideBook for Symbolics. New York: Springer-Verlag, 2006.http://www.mathematicaguidebooks.org/.Wall, H. S.Analytic Theory of Continued Fractions. New York: Chelsea, 1948.Zwillinger, D. (Ed.). "Trigonometric or Circular Functions." §6.1 inCRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp. 452-460, 1995.

Referenced on Wolfram|Alpha

Tangent

Cite this as:

Weisstein, Eric W. "Tangent." FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/Tangent.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp