Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Probable Error


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

The probabilityQ_delta that a random sample from an infinite normally distributed universe will have a meanm within a distance|delta| of the meanmu of the universe is

 Q_delta=2Phi(|delta|),
(1)

wherePhi(z) is thenormal distribution function anddelta is the observed value of

 t=(x^_-mu)/(sigma/(sqrt(N))).
(2)

The probable error is then defined as the valuedelta^* ofdelta such thatQ_delta=1/2, i.e.,

 Phi(delta^*)=1/4,
(3)

which is given by

delta^*=sqrt(2)erf^(-1)(1/2)
(4)
=0.674489750...
(5)

(OEISA092678; Kenney and Keeping 1962, p. 134). Here,erf^(-1)(x) is theinverse erf function. The probability of a deviation from the true population value at least as great as the probable error is therefore 1/2.


See also

Inverse Erf,Normal Distribution,Significance,Standard Error,Standard Normal Distribution

Explore with Wolfram|Alpha

References

Kenney, J. F. and Keeping, E. S.Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 129 and 134, 1962.Sloane, N. J. A. SequenceA092678 in "The On-Line Encyclopedia of Integer Sequences."Whittaker, E. T. and Robinson, G.The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, p. 184, 1967.

Referenced on Wolfram|Alpha

Probable Error

Cite this as:

Weisstein, Eric W. "Probable Error." FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/ProbableError.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp