Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Partition Function P


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

P(n), sometimes also denotedp(n) (Abramowitz and Stegun 1972, p. 825; Comtet 1974, p. 94; Hardy and Wright 1979, p. 273; Conway and Guy 1996, p. 94; Andrews 1998, p. 1), gives the number of ways of writing theintegern as a sum ofpositive integers, where the order ofaddends is not considered significant. By convention, partitions are usually ordered from largest to smallest (Skiena 1990, p. 51). For example, since 4 can be written

4=4
(1)
=3+1
(2)
=2+2
(3)
=2+1+1
(4)
=1+1+1+1,
(5)

it follows thatP(4)=5.P(n) is sometimes called the number of unrestricted partitions, and is implemented in theWolfram Language asPartitionsP[n].

The values ofP(n) forn=1, 2, ..., are 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ... (OEISA000041). The values ofP(10^n) forn=0, 1, ... are given by 1, 42, 190569292, 24061467864032622473692149727991, ... (OEISA070177).

The first few prime values ofP(n) are 2, 3, 5, 7, 11, 101, 17977, 10619863, ... (OEISA049575), corresponding to indices 2, 3, 4, 5, 6, 13, 36, 77, 132, ... (OEISA046063). As of Feb. 3, 2017, the largest knownn giving aprobable prime is1000007396 with35219 decimal digits (E. Weisstein, Feb. 12, 2017), while the largest knownn giving a proven prime is221444161 with16569 decimal digits (S. Batalov, Apr. 20, 2017;http://primes.utm.edu/top20/page.php?id=54#records).

PartitionFerrersDiagram

When explicitly listing the partitions of a numbern, the simplest form is the so-callednatural representation which simply gives the sequence of numbers in the representation (e.g., (2, 1, 1) for the number4=2+1+1). Themultiplicity representation instead gives the number of times each number occurs together with that number (e.g., (2, 1), (1, 2) for4=2·1+1·2). TheFerrers diagram is a pictorial representation of a partition. For example, the diagram above illustrates theFerrers diagram of the partition6+3+3+2+1=15.

Euler gave agenerating function forP(n) using theq-series

(q)_infty=product_(m=1)^(infty)(1-q^m)
(6)
=sum_(-infty)^(infty)(-1)^nq^(n(3n+1)/2)
(7)
=1-q-q^2+q^5+q^7-q^(12)-q^(15)+q^(22)+q^(26)+....
(8)

Here, the exponents are generalizedpentagonal numbers 0, 1, 2, 5, 7, 12, 15, 22, 26, 35, ... (OEISA001318) and the sign of thekth term (counting 0 as the 0th term) is(-1)^(|_(k+1)/2_|) (with|_x_| thefloor function). Then the partition numbersP(n) are given by thegenerating function

1/((q)_infty)=sum_(n=0)^(infty)P(n)q^n
(9)
=1+q+2q^2+3q^3+5q^4+...
(10)

(Hirschhorn 1999).

The number of partitions of a numbern intom parts is equal to the number of partitions into parts of which the largest ism, and the number of partitions into at mostm parts is equal to the number of partitions into parts which do not exceedm. Both these results follow immediately from noting that aFerrers diagram can be read either row-wise or column-wise (although the default order is row-wise; Hardy 1999, p. 83).

For example, ifa_n=1 for alln, then theEuler transformb_n is the number of partitions ofn into integer parts.

Euler invented agenerating function which gives rise to arecurrence equation inP(n),

 P(n)=sum_(k=1)^n(-1)^(k+1)[P(n-1/2k(3k-1))+P(n-1/2k(3k+1))]
(11)

(Skiena 1990, p. 57). Otherrecurrence equationsinclude

 P(2n+1)=P(n)+sum_(k=1)^infty[P(n-4k^2-3k)+P(n-4k^2+3k)]-sum_(k=1)^infty(-1)^k[P(2n+1-3k^2+k)+P(2n+1-3k^2-k)]
(12)

and

 P(n)=1/nsum_(k=0)^(n-1)sigma_1(n-k)P(k),
(13)

wheresigma_1(n) is thedivisor function (Skiena 1990, p. 77; Berndt 1994, p. 108), as well as the identity

 sum_(k=[-(sqrt(24n+1)+1)/6])^(|_(sqrt(24n+1)-1)/6_|)(-1)^kP(n-1/2k(3k+1))=0,
(14)

where|_x_| is thefloor function and[x] is theceiling function.

Arecurrence relation involving thepartitionfunction Q is given by

 P(n)=sum_(k=0)^(|_n/2_|)Q(n-2k)P(k).
(15)

Atkin and Swinnerton-Dyer (1954) obtained the unexpected identities

sum_(n=0)^(infty)P(5n)q^n=product_(n=1)^(infty)((1-q^(5n-3))(1-q^(5n-2))(1-q^(5n)))/((1-q^(5n-4))^2(1-q^(5n-1))^2) (mod 5)
(16)
sum_(n=0)^(infty)P(5n+1)q^n=product_(n=1)^(infty)((1-q^(5n)))/((1-q^(5n-4))(1-q^(5n-1))) (mod 5)
(17)
sum_(n=0)^(infty)P(5n+2)q^n=2product_(n=1)^(infty)((1-q^(5n)))/((1-q^(5n-3))(1-q^(5n-2))) (mod 5)
(18)
sum_(n=0)^(infty)P(5n+3)q^n=3product_(n=1)^(infty)((1-q^(5n-4))(1-q^(5n-1))(1-q^(5n)))/((1-q^(5n-3))^2(1-q^(5n-2))^2) (mod 5)
(19)

(Hirschhorn 1999).

MacMahon obtained the beautifulrecurrence relation

 P(n)-P(n-1)-P(n-2)+P(n-5)+P(n-7)  -P(n-12)-P(n-15)+...=0,
(20)

where the sum is over generalizedpentagonal numbers<=n and the sign of thekth term is(-1)^(|_(k+1)/2_|), as above. Ramanujan stated without proof the remarkable identities

 sum_(k=0)^inftyP(5k+4)q^k=5((q^5)_infty^5)/((q)_infty^6)
(21)

(Darling 1921; Mordell 1922; Hardy 1999, pp. 89-90), and

 sum_(k=0)^inftyP(7k+5)q^k=7((q^7)_infty^3)/((q)_infty^4)+49q((q^7)_infty^7)/((q)_infty^8)
(22)

(Mordell 1922; Hardy 1999, pp. 89-90, typo corrected).

Hardy and Ramanujan (1918) used thecircle method andmodular functions to obtain the asymptotic solution

 P(n)∼1/(4nsqrt(3))e^(pisqrt(2n/3))
(23)

(Hardy 1999, p. 116), which was also independently discovered by Uspensky (1920). Rademacher (1937) subsequently obtained an exact convergent series solution which yields the Hardy-Ramanujan formula (23) as the first term:

 P(n)=1/(pisqrt(2))sum_(k=1)^inftyA_k(n)sqrt(k)d/(dn)[(sinh(pi/ksqrt(2/3(n-1/(24)))))/(sqrt(n-1/(24)))],
(24)

where

 A_k(n)=sum_(h=1)^kdelta_(GCD(h,k),1)exp[piisum_(j=1)^(k-1)j/k((hj)/k-|_(hj)/k_|-1/2)-(2piihn)/k],
(25)

delta_(mn) is theKronecker delta, and|_x_| is thefloor function (Hardy 1999, pp. 120-121). The remainder afterN terms is

 R(N)<CN^(-1/2)+Dsqrt(N/n)sinh((Ksqrt(n))/N),
(26)

whereC andD are fixed constants (Apostol 1997, pp. 104-110; Hardy 1999, pp. 121 and 128). Rather amazingly, thecontour used by Rademacher involvesFarey sequences andFord circles (Apostol 1997, pp. 102-104; Hardy 1999, pp. 121-122). In 1942, Erdős showed that the formula of Hardy and Ramanujan could be derived by elementary means (Hoffman 1998, p. 91).

Bruinier and Ono (2011) found an algebraic formula for the partition functionP(n) as a finite sum of algebraic numbers as follows. Define the weight-2 meromorphic modular formF(z) by

 F(z)=1/2(E_2(z)-2E_2(2z)-3E_2(3z)+6E_2(6z))/(eta^2(z)eta^2(2z)eta^2(3z)eta^3(6z)),
(27)

wereq=e^(2piiz),E_2(q) is anEisenstein series, andeta(q) is aDedekind eta function. Now define

 R(z)=-(1/(2pii)d/(dz)+1/(2piy))F(z),
(28)

wherez=x+iy. Additionally letQ_n be any set of representatives of the equivalence classes of the integral binary quadratic formQ(x,y)=ax^2+bxy+cy^2 such that6|a witha>0 andb=1 (mod 12), and for eachQ(x,y), letalpha_Q be the so-called CM point in theupper half-plane, for whichQ(alpha_Q,1)=0. Then

 P(n)=(Tr(n))/(24n-1),
(29)

where the trace is defined as

 Tr(n)=sum_(Q in Q_n)R(alpha_Q).
(30)

Ramanujan found numerouspartitionfunction P congruences.

Letf_O(x) be thegenerating function for the number of partitionsP_O(n) ofn containingodd numbers only andf_D(x) be thegenerating function for the number of partitionsP_D(n) ofn without duplication, then

f_O(x)=f_D(x)
(31)
=product_(k=1,3,...)^(infty)sum_(i=0)^(infty)x^(ik)
(32)
=1/(product_(k=1,3,...)^(infty)1-x^k)
(33)
=product_(k=1)^(infty)(1+x^k)
(34)
=1/2(-q;x)_infty
(35)
=1+x+x^2+2x^3+2x^4+3x^5+...,
(36)

as discovered by Euler (Honsberger 1985; Andrews 1998, p. 5; Hardy 1999, p. 86), giving the first few values ofP_O(n)=P_D(n) forn=0, 1, ... as 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, ... (OEISA000009). The identity

 product_(k=1)^infty(1+z^k)=product_(k=1)^infty(1-z^(2k-1))^(-1)
(37)

is known as theEuler identity (Hardy 1999, p. 84).

Thegenerating function for the difference between the number of partitions into an even number of unequal parts and the number of partitions in an odd number of unequal parts is given by

product_(k=1)^(infty)(1-z^k)=1-z-z^2+z^5+z^7-z^(12)-z^(15)+...
(38)
=1+sum_(k=1)^(infty)c_kz^k,
(39)

where

 c_k={(-1)^n   for k of the form 1/2n(3n+/-1); 0   otherwise.
(40)

LetP_E(n) be the number of partitions ofeven numbers only, and letP_(EO)(n) (P_(DO)(n)) be the number of partitions in which the parts are alleven (odd) and all different. Then thegenerating function ofP_(DO)(n) is given by

f_(DO)(x)=product_(k=1,3,...)^(infty)1+x^k
(41)
=(-x;x^2)_infty
(42)

(Hardy 1999, p. 86), and the first few values of are 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, ... (OEISA000700). Additionalgenerating functions are given by Honsberger (1985, pp. 241-242).

Amazingly, the number of partitions with no even part repeated is the same as the number in which no part occurs more than three times and the same as the number in which no part is divisible by 4, all of which share the generating functions

P_3(n)=product_(k=1)^(infty)(1+x^(2k))/(1-x^(2k-1))
(43)
=product_(k=1)^(infty)(1+x^k+x^(2k)+x^(3k))
(44)
=product_(k=1)^(infty)(1-x^(4k))/(1-x^k)
(45)
=((x^4)_infty)/((x)_infty).
(46)

The first few values ofP^*(n) are 1, 2, 3, 4, 6, 9, 12, 16, 22, 29, 38, ... (OEISA001935; Honsberger 1985, pp. 241-242).

In general, the generating function for the number of partitions in which no part occurs more thand times is

P_d(n)=product_(k=1)^(infty)sum_(i=0)^(d)x^(ik)
(47)
=product_(k=1)^(infty)(1-x^((d+1)k))/(1-x^k)
(48)

(Honsberger 1985, pp. 241-242). The generating function for the number of partitions in which every part occurs 2, 3, or 5 times is

P_(2,3,5)(n)=product_(k=1)^(infty)(1+x^(2k)+x^(3k)+x^(5k))
(49)
=product_(k=1)^(infty)(1+x^(2k))(1+x^(3k))
(50)
=product_(k=1)^(infty)(1-x^(4k))/(1-x^(2k))(1-x^(6k))/(1-x^(3k))
(51)
=((x^4)_infty(x^6)_infty)/((x^2)_infty(x^3)_infty).
(52)

The first few values are 0, 1, 1, 1, 1, 3, 1, 3, 4, 4, 4, 8, 5, 9, 11, 11, 12, 20, 15, 23, ... (OEISA089958; Honsberger 1985, pp. 241-242).

The number of partitions in which no part occurs exactly once is

P_1(n)=product_(k=1)^(infty)(1+x^(2k)+x^(3k)+...)
(53)
=product_(k=1)^(infty)(1-x^k+x^(2k))/(1-x^k)
(54)
=product_(k=1)^(infty)(1+x^(3k))/(1-x^(2k))
(55)
=product_(k=1)^(infty)(1-x^(6k))/((1-x^(2k))(1-x^(3k)))
(56)
=product_(k=1)^(infty)((x^6)_infty)/((x^2)_infty(x^3)_infty).
(57)

The first few values are, 1, 0, 1, 1, 2, 1, 4, 2, 6, 5, 9, 7, 16, 11, 22, 20, 33, 28, 51, 42, 71, ... (OEISA007690; Honsberger 1985, p. 241, correcting the sign error in equation57).

Some additional interesting theorems following from these (Honsberger 1985, pp. 64-68 and 143-146) are:

1. The number of partitions ofn in which noeven part is repeated is the same as the number of partitions ofn in which no part occurs more than three times and also the same as the number of partitions in which no part is divisible by four.

2. The number of partitions ofn in which no part occurs more often thand times is the same as the number of partitions in which no term is a multiple ofd+1.

3. The number of partitions ofn in which each part appears either 2, 3, or 5 times is the same as the number of partitions in which each part iscongruent mod 12 to either 2, 3, 6, 9, or 10.

4. The number of partitions ofn in which no part appears exactly once is the same as the number of partitions ofn in which no part iscongruent to 1 or 5 mod 6.

5. The number of partitions in which the parts are alleven and different is equal to the absolute difference of the number of partitions withodd andeven parts.

P(n) satisfies the inequality

 P(n)<=1/2[P(n+1)+P(n-1)]
(58)

(Honsberger 1991).

P(n,k) denotes the number of ways of writingn as a sum ofexactlyk terms or, equivalently, the number of partitions into parts of which the largest isexactlyk. (Note that if "exactlyk" is changed to "kor fewer" and "largest isexactlyk," is changed to "no elementgreater thank," then thepartition functionq is obtained.) For example,P(5,3)=2, since the partitions of 5 of length 3 are{3,1,1} and{2,2,1}, and the partitions of 5 with maximum element 3 are{3,2} and{3,1,1}.

TheP(n,k) such partitions can be enumerated in theWolfram Language usingIntegerPartitions[n,{k}].

P(n,k) can be computed from therecurrence relation

 P(n,k)=P(n-1,k-1)+P(n-k,k)
(59)

(Skiena 1990, p. 58; Ruskey) withP(n,k)=0 fork>n,P(n,n)=1, andP(n,0)=0. The triangle ofP(k,n) is given by

 11  11  1  11  2  1  11  2  2  1  11  3  3  2  1  1
(60)

(OEISA008284). The number of partitions ofn with largest partk is the same asP(n,k).

Therecurrence relation can be solved exactlyto give

P(n,1)=1
(61)
P(n,2)=1/4[2n-1+(-1)^n]
(62)
P(n,3)=1/(72)[6n^2-7-9(-1)^n+16cos(2/3pin)]
(63)
P(n,4)=1/(864){3(n+1)[2n(n+2)-13+9(-1)^n]-96cos(2/3npi)+108(-1)^(n/2)mod(n+1,2)+32sqrt(3)sin(2/3npi)},
(64)

whereP(n,k)=0 forn<k. The functionsP(n,k) can also be given explicitly for the first few values ofk in the simple forms

P(n,2)=|_1/2n_|
(65)
P(n,3)=[1/(12)n^2],
(66)

where|_x_| is thefloor function and[x] is thenearest integer function (Honsberger 1985, pp. 40-45). A similar treatment by B. Schwennicke defines

 t_k(n)=n+1/4k(k-3)
(67)

and then yields

P(n,2)=[1/2t_2(n)]
(68)
P(n,3)=[1/(12)t_3^2(n)]
(69)
P(n,4)={[1/(144)t_4^3(n)-1/(48)t_4(n)] for n even; [1/(144)t_4^3(n)-1/(12)t_4(n)] for n odd.
(70)

Hardy and Ramanujan (1918) obtained the exact asymptotic formula

 P(n)=sum_(k<alphasqrt(n))P_k(n)+O(n^(-1/4)),
(71)

wherealpha is a constant. However, the sum

 sum_(k=1)^inftyP_k(n)
(72)

diverges, as first shown by Lehmer (1937).


See also

Alcuin's Sequence,Conjugate Partition,Elder's Theorem,Euler Identity,Ferrers Diagram,Göllnitz's Theorem,Partition,Partition Function P Congruences,Partition Functionq,Partition Function Q,Pentagonal Number,Pentagonal Number Theorem,Plane Partition,Random Partition,Rogers-Ramanujan Identities,Self-Conjugate Partition,Stanley's Theorem,Sum of Squares Function,Tau Function

Related Wolfram sites

http://functions.wolfram.com/IntegerFunctions/PartitionsP/

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Unrestricted Partitions." §24.2.1 inHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 825, 1972.Adler, H. "Partition Identities--From Euler to the Present."Amer. Math. Monthly76, 733-746, 1969.Adler, H. "The Use of Generating Functions to Discover and Prove Partition Identities."Two-Year College Math. J.10, 318-329, 1979.Andrews, G. E.The Theory of Partitions. Cambridge, England: Cambridge University Press, 1998.Apostol, T. M. Ch. 4 inIntroduction to Analytic Number Theory. New York: Springer-Verlag, 1976.Apostol, T. M. "Rademacher's Series for the Partition Function." Ch. 5 inModular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 94-112, 1997.Atkin, A. O. L. and Swinnerton-Dyer, P. "Some Properties of Partitions."Proc. London Math. Soc.4, 84-106, 1954.Berndt, B. C.Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 1994.Bruinier, J. H. and Ono, K. "Algebraic Formulas for the Coefficients of Half-Integral Weight Harmonic Weak Maass Forms."http://arxiv.org/abs/1104.1182/. 6 Apr 2011.Comtet, L.Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, p. 307, 1974.Conway, J. H. and Guy, R. K.The Book of Numbers. New York: Springer-Verlag, pp. 94-96, 1996.Darling, H. B. C. "Proofs of Certain Identities and Congruences Enunciated by S. Ramanujan."Proc. London Math. Soc.19, 350-372, 1921.David, F. N.; Kendall, M. G.; and Barton, D. E.Symmetric Function and Allied Tables. Cambridge, England: Cambridge University Press, p. 219, 1966.Gupta, H. "A Table of Partitions."Proc. London Math. Soc.39, 142-149, 1935.Gupta, H. "A Table of Partitions (II)."Proc. London Math. Soc.42, 546-549, 1937.Gupta, H.; Gwyther, A. E.; and Miller, J. C. P.Royal Society Mathematical Tables, Vol. 4: Tables of Partitions. London: Cambridge University Press, 1958.Hardy, G. H. "Ramanujan's Work on Partitions" and "Asymptotic Theory of Partitions." Chs. 6 and 8 inRamanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, pp. 83-100 and 113-131, 1999.Hardy, G. H. and Ramanujan, S. "Asymptotic Formulae in Combinatory Analysis."Proc. London Math. Soc.17, 75-115, 1918.Hardy, G. H. and Wright, E. M.An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.Hirschhorn, M. D. "Another Short Proof of Ramanujan's Mod 5 Partition Congruences, and More."Amer. Math. Monthly106, 580-583, 1999.Hoffman, P.The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, 1998.Honsberger, R.Mathematical Gems III. Washington, DC: Math. Assoc. Amer., pp. 40-45 and 64-68, 1985.Honsberger, R.More Mathematical Morsels. Washington, DC: Math. Assoc. Amer., pp. 237-239, 1991.Jackson, D. and Goulden, I.Combinatorial Enumeration. New York: Academic Press, 1983.Lehmer, D. H. "On the Hardy-Ramanujan Series for the Partition Function."J. London Math. Soc.12, 171-176, 1937.Lehmer, D. H. "On a Conjecture of Ramanujan."J. London Math. Soc.11, 114-118, 1936.Lehmer, D. H. "The Series for the Partition Function."Trans. Amer. Math. Soc.43, 271-295, 1938.Lehmer, D. H. "On the Remainders and Convergence of the Series for the Partition Function."Trans. Amer. Math. Soc.46, 362-373, 1939.MacMahon, P. A. "Note of the Parity of the Number which Enumerates the Partitions of a Number."Proc. Cambridge Philos. Soc.20, 281-283, 1921.MacMahon, P. A. "The Parity ofp(n), the Number of Partitions ofn, whenn<=1000."J. London Math. Soc.1, 225-226, 1926.MacMahon, P. A.Combinatory Analysis. New York: Chelsea, 1960.Mordell, L. J. "Note on Certain Modular Relations Considered by Messrs Ramanujan, Darling and Rogers."Proc. London Math. Soc.20, 408-416, 1922.Rademacher, H. "Zur Theorie der Modulfunktionen."J. reine angew. Math.167, 312-336, 1932.Rademacher, H. "On the Partition Functionp(n)."Proc. London Math. Soc.43, 241-254, 1937.Rademacher, H. "On the Expansion of the Partition Function in a Series."Ann. Math.44, 416-422, 1943.Ruskey, F. "Information of Numerical Partitions."http://www.theory.csc.uvic.ca/~cos/inf/nump/NumPartition.html.Skiena, S.Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990.Sloane, N. J. A. SequencesA000009/M0281,A000041/M0663,A000700/M0217,A001318/M1336,A001935/M0566,A007690/M0167,A008284,A046063,A049575,A070177,A089958 in "The On-Line Encyclopedia of Integer Sequences."Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995.Uspensky, J. V. "Asymptotic Formulae for Numerical Functions Which Occur in the Theory of Partitions.'Bull. Acad. Sci. URSS14, 199-218, 1920.

Referenced on Wolfram|Alpha

Partition Function P

Cite this as:

Weisstein, Eric W. "Partition Function P."FromMathWorld--A Wolfram Web Resource.https://mathworld.wolfram.com/PartitionFunctionP.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp