Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Null Space


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

IfT is alinear transformation ofR^n, then the null space Null(T), also called thekernelKer(T), is the set of allvectorsX such that

 T(X)=0,

i.e.,

 Null(T)={X:T(X)=0}.

The term "null space" is most commonly written as two separate words (e.g., Golub and Van Loan 1989, pp. 49 and 602; Zwillinger 1995, p. 128), although other authors write it as a single word "nullspace" (e.g., Anton 1994, p. 259; Robbin 1995, pp. 123 and 180).

Each null space vector corresponds to a zeroeigenvector of the transformation matrix ofT.

TheWolfram Language commandNullSpace[{v1,v2, ...}] returns a list of vectors forming avector basis for the nullspace of a set of vectors{v_1,v_2,...} over the rationals (or more generally, over whatever base field contains the input vectors).


See also

Fredholm's Theorem,Kernel,Linear Transformation,Nullity,Rank-Nullity Theorem,Vector Basis,Vector Space Span

Explore with Wolfram|Alpha

References

Anton, H.Calculus: A New Horizon, 6th ed. New York: Wiley, 1999.Golub, G. H. and Van Loan, C. F.Matrix Computations, 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.Robbin, J. W.Matrix Algebra Using MINImal MATlab. Wellesley, MA: A K Peters, 1995.Zwillinger, D. (Ed.).CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, 1995.

Referenced on Wolfram|Alpha

Null Space

Cite this as:

Weisstein, Eric W. "Null Space." FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/NullSpace.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp