Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Normed Banach Module


LetA be a normed (Banach) algebra. An algebraic leftA-moduleX is said to be a normed (Banach) leftA-module ifX is a normed (Banach) space and the outer multiplication is jointly continuous, i.e., if there is a nonnegative numberM such that||ax||<=M||a||||x||,a in A,x in X. IfA has an identitye, thenX is calledunital ifex=x for allx in X. A normed (Banach) right module can be similarly defined.

For example, every closed left idealI of a normed algebraA can be regarded as a Banach leftA-module with the product ofA giving the module multiplication.


See also

Normed Banach Bimodule

This entry contributed byMohammadSal Moslehian

Explore with Wolfram|Alpha

References

Helemskii, A. Ya.The Homology of Banach and Topological Algebras. Dordrecht, Netherlands: Kluwer, 1989.Helemskii, A. Ya. "The Homology in Algebra of Analysis." InHandbook of Algebra, Vol. 2. Amsterdam, Netherlands: Elsevier, 1997.

Referenced on Wolfram|Alpha

Normed Banach Module

Cite this as:

Moslehian, Mohammad Sal. "Normed Banach Module." FromMathWorld--A Wolfram Resource, created byEric W. Weisstein.https://mathworld.wolfram.com/NormedBanachModule.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp