Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Normal Difference Distribution


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

Amazingly, the distribution of a difference of twonormally distributed variatesX andY with means and variances(mu_x,sigma_x^2) and(mu_y,sigma_y^2), respectively, is given by

P_(X-Y)(u)=int_(-infty)^inftyint_(-infty)^infty(e^(-x^2/(2sigma_x^2)))/(sigma_xsqrt(2pi))(e^(-y^2/(2sigma_y^2)))/(sigma_ysqrt(2pi))delta((x-y)-u)dxdy
(1)
=(e^(-[u-(mu_x-mu_y)]^2/[2(sigma_x^2+sigma_y^2)]))/(sqrt(2pi(sigma_x^2+sigma_y^2))),
(2)

wheredelta(x) is adelta function, which is anothernormal distribution having mean

 mu_(X-Y)=mu_x-mu_y
(3)

andvariance

 sigma_(X-Y)^2=sigma_x^2+sigma_y^2.
(4)

See also

Normal Distribution,NormalRatio Distribution,Normal Sum Distribution

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Normal Difference Distribution."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/NormalDifferenceDistribution.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp