Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Nonarithmetic Progression Sequence


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

Given two starting numbers(a_1,a_2), the following table gives the unique sequences{a_i} that contain no three-term arithmetic progressions.

Sloanesequence
A0032781, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, ...
A0331561, 3, 4, 6, 10, 12, 13, 15, 28, 30, 31, 33, ...
A0331571, 4, 5, 8, 10, 13, 14, 17, 28, 31, 32, 35, ...
A0331581, 5, 6, 8, 12, 13, 17, 24, 27, 32, 34, 38, ...
A0331592, 3, 5, 6, 11, 12, 14, 15, 29, 30, 32, 33, ...
A0331602, 4, 5, 7, 11, 13, 14, 16, 29, 31, 32, 34, ...
A0331612, 5, 6, 9, 11, 14, 15, 18, 29, 32, 33, 36, ...
A0331623, 4, 6, 7, 12, 13, 15, 16, 30, 31, 33, 34, ...
A0331633, 5, 6, 8, 12, 14, 15, 17, 30, 32, 33, 35, ...
A0331644, 5, 7, 8, 13, 14, 16, 17, 31, 32, 34, 35, ...

See also

Arithmetic Progression

Explore with Wolfram|Alpha

References

Allouche, J.-P. and Shallit, J. "The Ring ofk-Regular Sequences."Theor. Comput. Sci.98, 163-197, 1992.Erdős, P. and Turán, P. "On Some Sequences of Integers."J. London Math. Soc.11, 261-264, 1936.Gerver, J.; Propp, J.; and Simpson, J. "Greedily Partitioning the Natural Numbers into Sets Free of Arithmetic Progressions."Proc. Amer. Math. Soc.102, 765-772, 1988.Guy, R. K. "Theorem of van der Waerden, Szemerédi's Theorem. Partitioning the Integers into Classes; at Least One Contains an A.P." §E10 inUnsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 204-209, 1994.Iacobescu, F. "Smarandache Partition Type and Other Sequences."Bull. Pure Appl. Sci.16E, 237-240, 1997.Ibstedt, H. "A Few Smarandache Sequences."Smarandache Notions J.8, 170-183, 1997.Sloane, N. J. A. SequencesA003278/M0975,A033156,A033157,A033158,A033159,A033160,A033161,A033162,A033163, andA033164 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Nonarithmetic Progression Sequence

Cite this as:

Weisstein, Eric W. "Nonarithmetic ProgressionSequence." FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/NonarithmeticProgressionSequence.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp