Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Noether-Lasker Theorem


LetM be a finitely generatedmodule over a commutativeNoetherian ringR. Then there exists a finite set{N_i|1<=i<=l} of submodules ofM such that

1. intersection _(i=1)^lN_i=0 and intersection _(i!=i_0)N_i is not contained inN_(i_0) for all1<=i_0<=l.

2. Each quotientM/N_i is primary for some primeP_i.

3. TheP_i are all distinct for1<=i<=l.

4. Uniqueness of the primary componentN_i is equivalent to the statement thatP_i does not containP_j for anyj!=i.


Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Noether-Lasker Theorem."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/Noether-LaskerTheorem.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp