Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Nicholson's Formula


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

LetJ_nu(z) be aBessel function of the first kind,Y_nu(z) aBessel function of the second kind, andK_nu(z) amodified Bessel function of the first kind. Then

 J_nu^2(z)+Y_nu^2(z)=8/(pi^2)int_0^inftyK_0(2zsinht)cosh(2nut)dt

forR[z]>0, whereR[z] denotes thereal part ofz.


See also

Bessel Function of the First Kind,Bessel Function of the Second Kind,Dixon-Ferrar Formula,Modified Bessel Function of the First Kind,Watson's Formula

Explore with Wolfram|Alpha

References

Gradshteyn, I. S. and Ryzhik, I. M. Eqn. 6.664.4 inTables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. 707, 2000.Iyanaga, S. and Kawada, Y. (Eds.).Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 1476, 1980.Magnus, W. and Oberhettinger, F.Formeln und Sätze für die speziellen Funktionen der mathematischen Physik, 2nd ed. Berlin: Springer-Verlag, p. 44, 1948.

Referenced on Wolfram|Alpha

Nicholson's Formula

Cite this as:

Weisstein, Eric W. "Nicholson's Formula."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/NicholsonsFormula.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp