Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Neville Theta Functions


The functions

theta_s(u)=(H(u))/(H^'(0))
(1)
theta_d(u)=(Theta(u+K))/(Theta(k))
(2)
theta_c(u)=(H(u))/(H(K))
(3)
theta_n(u)=(Theta(u))/(Theta(0)),
(4)

whereH(u) andTheta(u) are theJacobi theta functions andK(u) is the completeelliptic integral of the first kind.

The Neville theta functions are implemented in theWolfram Language asNevilleThetaC[z,m],NevilleThetaD[z,m],NevilleThetaN[z,m], andNevilleThetaS[z,m].


See also

Jacobi Theta Functions

Related Wolfram sites

http://functions.wolfram.com/EllipticFunctions/NevilleThetaC/,http://functions.wolfram.com/EllipticFunctions/NevilleThetaD/,http://functions.wolfram.com/EllipticFunctions/NevilleThetaN/,http://functions.wolfram.com/EllipticFunctions/NevilleThetaS/

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Neville's Notation for Theta Functions." §16.36 inHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 578-579, 1972.Neville, E. H.Jacobi Elliptic Functions, 2nd ed. London: Oxford University Press, 1951.

Referenced on Wolfram|Alpha

Neville Theta Functions

Cite this as:

Weisstein, Eric W. "Neville Theta Functions."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/NevilleThetaFunctions.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp