Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Nested Radical


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

Expressionsof the form

 lim_(k->infty)x_0+sqrt(x_1+sqrt(x_2+sqrt(...+x_k)))
(1)

are called nested radicals. Herschfeld (1935) proved that a nested radical ofrealnonnegative terms convergesiff(x_n)^(2^(-n)) is bounded. He also extended this result to arbitrarypowers (which include continued square roots andcontinued fractions as well), a result is known asHerschfeld's convergence theorem.

Nested radicals appear in the computation ofpi,

 2/pi=sqrt(1/2)sqrt(1/2+1/2sqrt(1/2))sqrt(1/2+1/2sqrt(1/2+1/2sqrt(1/2)))...
(2)

(Vieta 1593; Wells 1986, p. 50; Beckmann 1989, p. 95), intrigonometrical values ofcosine andsine for argumentsof the formpi/2^n, e.g.,

sin(pi/8)=1/2sqrt(2-sqrt(2))
(3)
cos(pi/8)=1/2sqrt(2+sqrt(2))
(4)
sin(pi/(16))=1/2sqrt(2-sqrt(2+sqrt(2)))
(5)
cos(pi/(16))=1/2sqrt(2+sqrt(2+sqrt(2))).
(6)

Nest radicals also appear in the computation of thegoldenratio

 phi=sqrt(1+sqrt(1+sqrt(1+sqrt(1+...))))
(7)

andplastic constant

 P=RadicalBox[{1, +, RadicalBox[{1, +, RadicalBox[{1, +, ...}, 3]}, 3]}, 3].
(8)

Both of these are special cases of

 x=RadicalBox[{a, +, RadicalBox[{a, +, ...}, n]}, n],
(9)

which can be exponentiated to give

 x^n=a+RadicalBox[{a, +, RadicalBox[{a, +, ...}, n]}, n],
(10)

so solutions are

 x^n=a+x.
(11)

In particular, forn=2, this gives

 x=1/2(1+sqrt(4a+1)).
(12)

Thesilver constant is related to the nested radicalexpression

 RadicalBox[{7, +, 7, RadicalBox[{7, +, ...}, 3]}, 3].
(13)

There are a number of general formula for nested radicals (Wong and McGuffin). For example,

 x=RadicalBox[{{(, {1, -, q}, )}, {x, ^, n}, +, q, {x, ^, {(, {n, -, 1}, )}}, RadicalBox[{{(, {1, -, q}, )}, {x, ^, n}, +, q, {x, ^, {(, {n, -, 1}, )}}, RadicalBox[..., n]}, n]}, n]
(14)

which gives as special cases

 (b+sqrt(b^2+4a))/2=sqrt(a+bsqrt(a+bsqrt(a+bsqrt(...))))
(15)

(n=2,q=1-a/x^2,x=b/q),

 x=RadicalBox[{{x, ^, {(, {n, -, 1}, )}}, RadicalBox[{{x, ^, {(, {n, -, 1}, )}}, RadicalBox[{{x, ^, {(, {n, -, 1}, )}}, RadicalBox[..., n]}, n]}, n]}, n]
(16)

(q=1), and

 x=sqrt(xsqrt(xsqrt(xsqrt(xsqrt(...)))))
(17)

(q=1,n=2). Equation (14) also gives rise to

 q^((n^k-1)/(n-1))x^(n^j)=RadicalBox[{{q, ^, {(, {{(, {{n, ^, {(, {k, +, 1}, )}}, -, n}, )}, /, {(, {n, -, 1}, )}}, )}}, {(, {1, -, q}, )}, {x, ^, {(, {n, ^, {(, {j, +, 1}, )}}, )}}, +, ...}, n] ...+RadicalBox[{{q, ^, {(, {{(, {{n, ^, {(, {k, +, 2}, )}}, -, n}, )}, /, {(, {n, -, 1}, )}}, )}}, {(, {1, -, q}, )}, {x, ^, {(, {n, ^, {(, {j, +, 2}, )}}, )}}, +, RadicalBox[..., n]}, n]^_,
(18)

which gives the special case forq=1/2,n=2,x=1, andk=-1,

 sqrt(2)=sqrt(2/(2^(2^0))+sqrt(2/(2^(2^1))+sqrt(2/(2^(2^2))+sqrt(2/(2^(2^3))+sqrt(2/(2^(2^4))+...))))).
(19)

Equation (◇) can be generalized to

 x^(1/(n-1))=RadicalBox[{x, RadicalBox[{x, RadicalBox[{x, ...}, n]}, n]}, n]
(20)

for integersn>=2, which follows from

1+1/n+1/(n^2)+...=1/(1-1/n)
(21)
=n/(n-1)
(22)
=1+1/(n-1)
(23)
1/n+1/(n^2)+1/(n^3)+...=1/(n-1)
(24)
1/n(1+1/n(1+1/n(1+...)))=1/(n-1).
(25)

In particular, takingn=3 gives

 sqrt(x)=RadicalBox[{x, RadicalBox[{x, RadicalBox[{x, ...}, 3]}, 3]}, 3].
(26)

(J. R. Fielding, pers. comm., Oct. 8, 2002).

Ramanujan discovered

 x+n+a=sqrt(ax+(n+a)^2+xsqrt(a(x+n)+(n+a)^2+...)) ...+(x+n)sqrt(a(x+2n)+(n+a)^2+(x+2n)sqrt(...))^_^_,
(27)

which gives the special cases

 x+1=sqrt(1+xsqrt(1+(x+1)sqrt(1+(x+2)sqrt(1+...))))
(28)

fora=0,n=1 (Ramanujan 1911; Ramanujan 2000, p. 323; Pickover 2002, p. 310), and

 3=sqrt(1+2sqrt(1+3sqrt(1+4sqrt(1+5sqrt(...)))))
(29)

fora=0,n=1, andx=2. The justification of this process in general (and in the particular example oflnsigma, wheresigma isSomos's quadratic recurrence constant) is given by Vijayaraghavan (in Ramanujan 2000, p. 348).

An amusing nested radical follows rewriting the series fore

 e=1+1/(1!)+1/(2!)+1/(3!)+...
(30)

as

 e=1+1+1/2(1+1/3(1+1/4(1+1/5(1+...)))),
(31)

so

 x^(e-2)=sqrt(xRadicalBox[{x, RadicalBox[{x, RadicalBox[{x, ...}, 5]}, 4]}, 3])
(32)

(J. R. Fielding, pers. comm., May 15, 2002).


See also

Bolyai Expansion,Continued Fraction,Golden Ratio,Herschfeld's Convergence Theorem,Nested Radical Constant,Paris Constant,Pi Formulas,Power Tower,Ramanujan Log-Trigonometric Integrals,Silver Constant,Somos's Quadratic Recurrence Constant,Square Root

Explore with Wolfram|Alpha

References

Beckmann, P.A History of Pi, 3rd ed. New York: Dorset Press, 1989.Berndt, B. C.Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, pp. 14-20, 1994.Borwein, J. M. and de Barra, G. "Nested Radicals."Amer. Math. Monthly98, 735-739, 1991.Herschfeld, A. "On Infinite Radicals."Amer. Math. Monthly42, 419-429, 1935.Jeffrey, D. J. and Rich, A. D. InComputer Algebra Systems (Ed. M. J. Wester). Chichester, England: Wiley, 1999.Landau, S. "A Note on 'Zippel Denesting.' "J. Symb. Comput.13, 31-45, 1992a.Landau, S. "Simplification of Nested Radicals."SIAM J. Comput.21, 85-110, 1992b.Landau, S. "How to Tangle with a Nested Radical."Math. Intell.16, 49-55, 1994.Landau, S. "sqrt(2)+sqrt(3): Four Different Views."Math. Intell.20, 55-60, 1998.Pólya, G. and Szegö, G.Problems and Theorems in Analysis, Vol. 1. New York: Springer-Verlag, 1997.Ramanujan, S. Question No. 298.J. Indian Math. Soc. 1911.Ramanujan, S.Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson). Providence, RI: Amer. Math. Soc., p. 327, 2000.Sizer, W. S. "Continued Roots."Math. Mag.59, 23-27, 1986.Vieta, F.Uriorum de rebus mathematicis responsorum. Liber VII. 1593. Reprinted in New York: Georg Olms, pp. 398-400 and 436-446, 1970.Wells, D.The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, 1986.Wong, B. and McGuffin, M. "The Museum of Infinite Nested Radicals."http://www.dgp.toronto.edu/~mjmcguff/math/nestedRadicals.html.

Referenced on Wolfram|Alpha

Nested Radical

Cite this as:

Weisstein, Eric W. "Nested Radical." FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/NestedRadical.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp