Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Nest and Nest Algebra


LetH be a complexHilbert space, and define a nest as a setN of closed subspaces ofH satisfying the conditions:

1.0,H in N,

2. IfN_1,N_2 in N, then eitherN_1 subset= N_2 orN_2 subset= N_1,

3. If{N_i}_(i in I) subset= N,then intersection _(i in I)T_i in N,

4. If{N_i}_(i in I) subset= N ,then the norm closure of the linear span of union _(i in I)N_i lies inN.

(Davidson 1988).

The nest algebra associated with the nestN is the setT(N)={T in B(H):T(N) subset= N for all N  in N}.

For example, consider an orthonormal basis{e_j:j=1,2,...} of a separable Hilbert spaceH. PutN_k=span{e_1,...,e_k}. ThenN={N_k:k=1,2,...} union {0,H} is a nest and the associated nest algebraT(N) is the algebra of operators whose matrix representation with respect to{e_j} is upper triangular.


This entry contributed byMohammadSal Moslehian

Explore with Wolfram|Alpha

References

Davidson, K. R.Nest Algebras: Triangular Forms for Operator Algebras on Hilbert Space. Harlow: Longman, 1988.

Referenced on Wolfram|Alpha

Nest and Nest Algebra

Cite this as:

Moslehian, Mohammad Sal. "Nest and Nest Algebra." FromMathWorld--A Wolfram Resource, created byEric W. Weisstein.https://mathworld.wolfram.com/NestandNestAlgebra.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp