Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

NURBS Surface


A nonuniform rationalB-spline surface of degree(p,q) is defined by

 S(u,v)=(sum_(i=0)^(m)sum_(j=0)^(n)N_(i,p)(u)N_(j,q)(v)w_(i,j)P_(i,j))/(sum_(i=0)^(m)sum_(j=0)^(n)N_(i,p)(u)N_(j,q)(v)w_(i,j)),

whereN_(i,p) andN_(j,q) are theB-spline basis functions,P_(i,j) are control points, and the weightw_(i,j) ofP_(i,j) is the last ordinate of the homogeneous pointP_(i,j)^w.

NURBS surfaces are implemented in theWolframLanguage asBSplineSurface[array].


See also

B-Spline,BézierCurve,NURBS Curve

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "NURBS Surface." FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/NURBSSurface.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp