Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Maclaurin Series


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

A Maclaurin series is aTaylor series expansionof a function about 0,

 f(x)=f(0)+f^'(0)x+(f^('')(0))/(2!)x^2+(f^((3))(0))/(3!)x^3+...+(f^((n))(0))/(n!)x^n+....
(1)

Maclaurin series are named after the Scottish mathematician Colin Maclaurin.

The Maclaurin series of a functionf(x) up to ordern may be found usingSeries[f,{x, 0,n}]. Thenth term of a Maclaurin series of a functionf can be computed in theWolfram Language usingSeriesCoefficient[f,{x, 0,n}] and is given by the inverseZ-transform

 a_n=Z^(-1)[f(1/x)](n).
(2)

Maclaurin series are a type ofseries expansion in which all terms are nonnegative integer powers of the variable. Other more general types of series include theLaurent series and thePuiseux series.

Maclaurin series for common functions include

1/(1-x)=1+x+x^2+x^3+x^4+x^5+...
(3)
  for -1<x<1
(4)
cn(x,k)=1-1/2x^2+1/(24)(1+4k^2)x^4+...
(5)
cosx=1-1/2x^2+1/(24)x^4-1/(720)x^6+...
(6)
  for -infty<x<infty
(7)
cos^(-1)x=1/2pi-x-1/6x^3-3/(40)x^5-5/(112)x^7-...
(8)
  for -1<x<1
(9)
coshx=1+1/2x^2+1/(24)x^4+1/(720)x^6+1/(40,320)x^8+...
(10)
cot^(-1)x=1/2pi-x+1/3x^3-1/5x^5+1/7x^7-1/9x^9+...
(11)
dn(x,k)=1-1/2k^2x^2+1/(24)k^2(4+k^2)x^4+...
(12)
erf(x)=1/(sqrt(pi))(2x-2/3x^3+1/5x^5-1/(21)x^7+...)
(13)
e^x=1+x+1/2x^2+1/6x^3+1/(24)x^4+...
(14)
  for -infty<x<infty
(15)
_2F_1(alpha,beta;gamma;x)=1+(alphabeta)/(1!gamma)x+(alpha(alpha+1)beta(beta+1))/(2!gamma(gamma+1))x^2+...
(16)
ln(1+x)=x-1/2x^2+1/3x^3-1/4x^4+...
(17)
  for -1<x<=1
(18)
ln((1+x)/(1-x))=2x+2/3x^3+2/5x^5+2/7x^7+...
(19)
  for -1<x<1
(20)
secx=1+1/2x^2+5/(24)x^4+(61)/(720)x^6+(277)/(8064)x^8+...
(21)
sechx=1-1/2x^2+5/(24)x^4-(61)/(720)x^6+(277)/(8064)x^8+...
(22)
sinx=x-1/6x^3+1/(120)x^5-1/(5040)x^7+...
(23)
  for -infty<x<infty
(24)
sin^(-1)x=x+1/6x^3+3/(40)x^5+5/(112)x^7+(35)/(1152)x^9+...
(25)
sinhx=x+1/6x^3+1/(120)x^5+1/(5040)x^7+1/(362880)x^9+...
(26)
sinh^(-1)x=x-1/6x^3+3/(40)x^5-5/(112)x^7+(35)/(1152)x^9-...
(27)
sn(x,k)=x-1/6(1+k^2)x^3+1/(120)(1+14k^2+k^4)x^5+...
(28)
tanx=x+1/3x^3+2/(15)x^5+(17)/(315)x^7+(62)/(2835)x^9+...
(29)
tan^(-1)x=x-1/3x^3+1/5x^5-1/7x^7+...
(30)
  for -1<x<1
(31)
tanhx=x-1/3x^3+2/(15)x^5-(17)/(315)x^7+(62)/(2835)x^9+...
(32)
tanh^(-1)x=x+1/3x^3+1/5x^5+1/7x^7+1/9x^9+....
(33)

The explicit forms for some of these are

1/(1-x)=sum_(n=0)^(infty)x^n
(34)
cosx=sum_(n=0)^(infty)((-1)^n)/((2n)!)x^(2n)
(35)
cos^(-1)x=pi/2-sum_(n=0)^(infty)(Gamma(n+1/2))/(sqrt(pi)(2n+1)n!)x^(2n+1)
(36)
coshx=sum_(n=0)^(infty)1/((2n)!)x^(2n)
(37)
cot^(-1)x=pi/2-sum_(n=0)^(infty)((-1)^n)/(2n+1)x^(2n+1)
(38)
e^x=sum_(n=0)^(infty)1/(n!)x^n
(39)
erf(x)=sum_(n=0)^(infty)(2(-1)^n)/(sqrt(pi)(2n+1)n!)x^(2n+1)
(40)
_2F_1(alpha,beta;gamma,x)=sum_(n=0)^(infty)((alpha)_n(beta)_n)/((gamma)_n)(x^n)/(n!)
(41)
ln(1+x)=sum_(n=1)^(infty)((-1)^(n+1))/nx^n
(42)
ln((1+x)/(1-x))=sum_(n=1)^(infty)2/((2n-1))x^(2n-1)
(43)
secx=sum_(n=0)^(infty)((-1)^nE_(2n))/((2n)!)x^(2n)
(44)
sechx=sum_(n=0)^(infty)(E_(2n))/((2n)!)x^(2n)
(45)
sinx=sum_(n=0)^(infty)((-1)^n)/((2n+1)!)x^(2n+1)
(46)
sin^(-1)x=sum_(n=0)^(infty)(Gamma(n+1/2))/(sqrt(pi)(2n+1)n!)x^(2n+1)
(47)
sinhx=sum_(n=0)^(infty)1/((2n+1)!)x^(2n+1)
(48)
sinh^(-1)x=sum_(n=0)^(infty)(P_(2n)(0))/(2n+1)x^(2n+1)
(49)
tanx=sum_(n=0)^(infty)((-1)^n2^(2n+2)(2^(2n+2)-1)B_(2n+2))/((2n+2)!)x^(2n+1)
(50)
tan^(-1)x=sum_(n=1)^(infty)((-1)^(n+1))/(2n-1)x^(2n-1)
(51)
tanhx=sum_(n=1)^(infty)(2^(2n)(2^(2n)-1)B_(2n))/((2n)!)x^(2n-1)
(52)
tanh^(-1)x=sum_(n=1)^(infty)1/(2n-1)x^(2n-1),
(53)

whereGamma(x) is agamma function,B_n is aBernoulli number,E_n is anEuler number andP_n(x) is aLegendre polynomial.


See also

Alcuin's Sequence,Fourier Series,Generalized Fourier Series,Lagrange Inversion Theorem,Lagrange Remainder,Laurent Series,Power Series,Puiseux Series,Series Expansion,Taylor SeriesExplore this topic in the MathWorld classroom

Explore with Wolfram|Alpha

References

Beyer, W. H. (Ed.).CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 299-300, 1987.

Referenced on Wolfram|Alpha

Maclaurin Series

Cite this as:

Weisstein, Eric W. "Maclaurin Series."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/MaclaurinSeries.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp