Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Inclusion-Exclusion Principle


Let|A| denote thecardinal number of setA, then it follows immediately that

 |A union B|=|A|+|B|-|A intersection B|,
(1)

where union denotesunion, and intersection denotesintersection. The more general statement

 | union _(i=1)^NE_i|<=sum_(i=1)^N|E_i|,
(2)

also holds, and is known as Boole's inequality or one of theBonferroniinequalities.

This formula can be generalized in the following beautiful manner. LetA={A_i}_(i=1)^p be ap-system ofS consisting of setsA_1, ...,A_p, then

 |A_1 union A_2 union ... union A_p|=sum_(1<=i<=p)|A_i|-sum_(1<=i_1<i_2<=p)|A_(i_1) intersection A_(i_2)|+sum_(1<=i_1<i_2<i_3<=p)|A_(i_1) intersection A_(i_2) intersection A_(i_3)|-...+(-1)^(p-1)|A_1 intersection A_2 intersection ... intersection A_p|,
(3)

where the sums are taken overk-subsets ofA. This formula holds for infinite setsS as well as finite sets (Comtet 1974, p. 177).

The principle of inclusion-exclusion was used by Nicholas Bernoulli to solve the recontres problem of finding the number ofderangements (Bhatnagar 1995, p. 8).

For example, for the three subsetsA_1={2,3,7,9,10},A_2={1,2,3,9}, andA_3={2,4,9,10} ofS={1,2,...,10}, the following table summarizes the terms appearing the sum.

#termsetlength
1A_1{2, 3, 7, 9, 10}5
A_2{1, 2, 3, 9}4
A_3{2, 4, 9, 10}4
2A_1 intersection A_2{2, 3, 9}3
A_1 intersection A_3{2, 9, 10}3
A_2 intersection A_3{2, 9}2
3A_1 intersection A_2 intersection A_3{2, 9}2

|A_1 union A_2 union A_3| is therefore equal to(5+4+4)-(3+3+2)+2=7, corresponding to the seven elementsA_1 union A_2 union A_3={1,2,3,4,7,9,10}.


See also

Bayes' Theorem,BonferroniInequalities

Explore with Wolfram|Alpha

References

Andrews, G. E.Number Theory. Philadelphia, PA: Saunders, pp. 139-140, 1971.Andrews, G. E.q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Providence, RI: Amer. Math. Soc., p. 60, 1986.Bhatnagar, G.Inverse Relations, Generalized Bibasic Series, and Their U(n) Extensions. Ph.D. thesis. Ohio State University, 1995.Comtet, L.Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 176-177, 1974.da Silva. "Proprietades geraes."J. de l'Ecole Polytechnique, cah. 30.de Quesada, C. A. "Daniel Augusto da Silva e la theoria delle congruenze binomie."Ann. Sci. Acad. Polytech. Porto, Coīmbra4, 166-192, 1909.Dohmen, K.Improved Bonferroni Inequalities with Applications: Inequalities and Identities of Inclusion-Exclusion Type. Berlin: Springer-Verlag, 2003.Havil, J.Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, p. 66, 2003.Knuth, D. E.The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd ed. Reading, MA: Addison-Wesley, pp. 178-179, 1997.Sylvester, J. "Note sur la théorème de Legendre."Comptes Rendus Acad. Sci. Paris96, 463-465, 1883.

Referenced on Wolfram|Alpha

Inclusion-Exclusion Principle

Cite this as:

Weisstein, Eric W. "Inclusion-Exclusion Principle."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/Inclusion-ExclusionPrinciple.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp