Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Generating Function


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

A generating functionf(x) is aformal power series

 f(x)=sum_(n=0)^inftya_nx^n
(1)

whosecoefficients give thesequence{a_0,a_1,...}.

TheWolfram Language commandGeneratingFunction[expr,n,x] gives the generating function in the variablex for the sequence whosenth term isexpr. Given a sequence of terms,FindGeneratingFunction[{a1,a2, ...},x] attempts to find a simple generating function inx whosenth coefficient isa_n.

Given a generating function, the analytic expression for thenth term in the corresponding series can be computing usingSeriesCoefficient[expr,{x,x0,n}]. The generating functionf(x) is sometimes said to "enumerate"a_n (Hardy 1999, p. 85).

Generating functions giving the first few powers of the nonnegative integers are given in the following table.

n^pf(x)series
1x/(1-x)x+x^2+x^3+...
nx/((1-x)^2)x+2x^2+3x^3+4x^4+...
n^2(x(x+1))/((1-x)^3)x+4x^2+9x^3+16x^4+...
n^3(x(x^2+4x+1))/((1-x)^4)x+8x^2+27x^3+...
n^4(x(x+1)(x^2+10x+1))/((1-x)^5)x+16x^2+81x^3+...

There are many beautiful generating functions for special functions in number theory. A few particularly nice examples are

f(x)=1/((x)_infty)
(2)
=sum_(n=0)^(infty)P(n)x^n
(3)
=1+x+2x^2+3x^3+...
(4)

for thepartition function P, where(q)_infty is aq-Pochhammer symbol, and

f(x)=x/(1-x-x^2)
(5)
=sum_(n=0)^(infty)F_nx^n
(6)
=x+x^2+2x^3+3x^4+...
(7)

for theFibonacci numbersF_n.

Generating functions are very useful in combinatorial enumeration problems. For example, thesubset sum problem, which asks the number of waysc_(m,s) to selectm out ofM given integers such that their sum equalss, can be solved using generating functions.

The generating function ofG(t) of a sequence of numbersf(n) is given by theZ-transform off(n) in the variable1/t (Germundsson 2000).


See also

Cumulant-Generating Function,Enumerate,Exponential Generating Function,Formal Power Series,Moment-Generating Function,Recurrence Relation,Subset Sum Problem,Z-TransformExplore this topic in the MathWorld classroom

Explore with Wolfram|Alpha

References

Bender, E. A. and Goldman, J. R. "Enumerative Uses of Generating Functions."Indiana U. Math. J.20, 753-765, 1970/1971.Bergeron, F.; Labelle, G.; and Leroux, P. "Théorie des espèces er Combinatoire des Structures Arborescentes." Publications du LACIM. Québec, Montréal, Canada: Univ. Québec Montréal, 1994.Cameron, P. J. "Some Sequences of Integers."Disc. Math.75, 89-102, 1989.Doubilet, P.; Rota, G.-C.; and Stanley, R. P. "The Idea of Generating Function." Ch. 3 inFinite Operator Calculus (Ed. G.-C. Rota). New York: Academic Press, pp. 83-134, 1975.Germundsson, R. "Mathematica Version 4."Mathematica J.7, 497-524, 2000.Graham, R. L.; Knuth, D. E.; and Patashnik, O.Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994.Harary, F. and Palmer, E. M.Graphical Enumeration. New York: Academic Press, 1973.Hardy, G. H.Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, p. 85, 1999.Lamdo, S. K.Lectures on Generating Functions. Providence, RI: Amer. Math. Soc., 2003.Leroux, P. and Miloudi, B. "Généralisations de la formule d'Otter."Ann. Sci. Math. Québec16, 53-80, 1992.Riordan, J.Combinatorial Identities. New York: Wiley, 1979.Riordan, J.An Introduction to Combinatorial Analysis. New York: Wiley, 1980.Rosen, K. H.Discrete Mathematics and Its Applications, 4th ed. New York: McGraw-Hill, 1998.Sloane, N. J. A. and Plouffe, S. "Recurrences and Generating Functions." §2.4 inThe Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, pp. 9-10, 1995.Stanley, R. P.Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, p. 63, 1996.Viennot, G. "Une Théorie Combinatoire des Polynômes Orthogonaux Généraux." Publications du LACIM. Québec, Montréal, Canada: Univ. Québec Montréal, 1983.Wilf, H. S.Generatingfunctionology, 2nd ed. New York: Academic Press, 1994.

Referenced on Wolfram|Alpha

Generating Function

Cite this as:

Weisstein, Eric W. "Generating Function."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/GeneratingFunction.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp