Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Fibonacci Factorial Constant


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

The Fibonacci factorial constant is the constant appearing in the asymptotic growth of thefibonorials (aka. Fibonacci factorials)n!_F. It is given by theinfinite product

 F=product_(k=1)^infty(1-a^k),
(1)

where

 a=-1/(phi^2)
(2)

andphi is thegolden ratio.

It can be given in closed form by

F=(-phi^(-2);-phi^(-2))_infty
(3)
=((-1)^(1/24)phi^(1/12))/(2^(1/3))[theta_1^'(0,-i/phi)]^(1/3)
(4)
=1.2267420...
(5)

(OEISA062073), where(q;q)_infty is aq-Pochhammer symbol andtheta_n(z,q) is aJacobi theta function.


See also

Fibonorial,GoldenRatio,Infinite Product

Explore with Wolfram|Alpha

References

Finch, S. R. "Fibonacci Factorials." §1.2.5 inMathematical Constants. Cambridge, England: Cambridge University Press, p. 10, 2003.Graham, R. L.; Knuth, D. E.; and Patashnik, O.Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, pp. 478 and 571, 1994.Plouffe, S.http://pi.lacim.uqam.ca/piDATA/fibofact.txt.Sloane, N. J. A. SequenceA062073 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Fibonacci Factorial Constant

Cite this as:

Weisstein, Eric W. "Fibonacci Factorial Constant."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/FibonacciFactorialConstant.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp