
Fibonacci Factorial Constant
The Fibonacci factorial constant is the constant appearing in the asymptotic growth of thefibonorials (aka. Fibonacci factorials). It is given by theinfinite product
(1) |
where
(2) |
and is thegolden ratio.
It can be given in closed form by
(3) | |||
(4) | |||
(5) |
(OEISA062073), where is aq-Pochhammer symbol and
is aJacobi theta function.
See also
Fibonorial,GoldenRatio,Infinite ProductExplore with Wolfram|Alpha

More things to try:
References
Finch, S. R. "Fibonacci Factorials." §1.2.5 inMathematical Constants. Cambridge, England: Cambridge University Press, p. 10, 2003.Graham, R. L.; Knuth, D. E.; and Patashnik, O.Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, pp. 478 and 571, 1994.Plouffe, S.http://pi.lacim.uqam.ca/piDATA/fibofact.txt.Sloane, N. J. A. SequenceA062073 in "The On-Line Encyclopedia of Integer Sequences."Referenced on Wolfram|Alpha
Fibonacci Factorial ConstantCite this as:
Weisstein, Eric W. "Fibonacci Factorial Constant."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/FibonacciFactorialConstant.html