Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Cylindrical Algebraic Decomposition


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

Define a cell inR^1 as an open interval or a point. A cell inR^(k+1) then has one of two forms,

 {(x,y):x in C, and f(x)<y<g(x)}
(1)

or

 {(x,y):x in C, and y=f(x)},
(2)

wherex={x_1,...,x_k},C is a cell inR^k,f andg are either (1) continuous functions onC such that for some polynomialsF andG,F(x,f(x))=0 andG(x,g(x))=0, or (2)+/-infty, andf(x)<g(x) for allx in C.

A cylindrical algebraic decomposition ofS subset R^n is a representation ofS as a finite union of disjoint cells. LetF be finite set of polynomials inn variables. A cylindrical algebraic decomposition ofS subset R^n is said to beF-invariant if each of the polynomials fromF has a constant sign on each cell of the decomposition.

The cylindrical algebraic decomposition (CAD) algorithm, given a finite setF of polynomials inn variables, computes anF-invariant cylindrical algebraic decomposition ofR^n. Given a logical combination of polynomial equations and inequalities inn realunknowns, one can use the CAD algorithm to find a cylindrical algebraic decomposition of its solution set. For example, the decomposition of

 x^2+y^2+z^2<1
(3)

is given by

 {-1<x<1; -sqrt(1-x^2)<y<sqrt(1-x^2); -sqrt(1-x^2-y^2)<z<sqrt(1-x^2-y^2).
(4)

The commandCylindricalDecomposition[ineqs,{x1,x2, ...}] performs cylindrical algebraic decompositions in theWolfram Language. Although the process is algorithmic, it becomes computationally infeasible for complicated inequalities.


See also

Cylindrical Parts,Generic Cylindrical Algebraic Decomposition,Quantifier Elimination,Tarski's Theorem

This entry contributed byAdamStrzebonski

Explore with Wolfram|Alpha

References

Brown, C. W. "Simple CAD Construction and Its Applications."J. Symbolic Comput.31, 521-547, 2001.Caviness, B. F. and Johnson, J. R. (Eds.).Quantifier Elimination and Cylindrical Algebraic Decomposition. New York: Springer-Verlag, 1998.Collins, G. E. "Quantifier Elimination for the Elementary Theory of Real Closed Fields by Cylindrical Algebraic Decomposition."Lect. Notes Comput. Sci.33, 134-183, 1975.Collins, G. E. "Quantifier Elimination by Cylindrical Algebraic Decomposition--Twenty Years of Progress." InQuantifier Elimination and Cylindrical Algebraic Decomposition (Ed. B. F. Caviness and J. R. Johnson). New York: Springer-Verlag, pp. 8-23, 1998.Collins, G. E. and Hong, H. "Partial Cylindrical Algebraic Decomposition for Quantifier Elimination."J. Symb. Comput.12, 299-328, 1991.Dolzmann, A. and Sturm, T. "Simplification of Quantifier-Free Formulae Over Ordered Fields."J. Symb. Comput.24, 209-231, 1997.Faugere, J. C.; Gianni, P.; Lazard, D.; and Mora, T. "Efficient Computation of Zero-Dimensional Groebner Bases by Change of Ordering."J. Symb. Comput.16, 329-344, 1993.Hong, H. "An Improvement of the Projection Operator in Cylindrical Algebraic Decomposition." InISSAC '90: Proceedings of the International Symposium on Symbolic and Algebraic Computation, August 20-24, 1990, Tokyo, Japan (Ed. S. Watanabe and M. Nagata). New York: ACM Press, pp. 261-264, 1990.Loos, R. and Weispfenning, V. "Applying Lattice Quantifier Elimination."Comput. J.36, 450-461, 1993.McCallum, S. "Solving Polynomial Strict Inequalities Using Cylindrical Algebraic Decomposition."Comput. J.36, 432-438, 1993.McCallum, S. "An Improved Projection for Cylindrical Algebraic Decomposition of Three Dimensional Space."J. Symb. Comput.5, 141-161, 1988.McCallum, S. "An Improved Projection for Cylindrical Algebraic Decomposition." InQuantifier Elimination and Cylindrical Algebraic Decomposition (Ed. B. F. Caviness and J. R. Johnson). New York: Springer-Verlag, pp. 242-268, 1998.McCallum, S. and Collins, G. E. "Local Box Adjacency Algorithms for Cylindrical Algebraic Decompositions."J. Symb. Comput.33, 321-342, 2002.Strzebonski, A. "An Algorithm for Systems of Strong Polynomial Inequalities."Mathematica J.4, 74-77, 1994.Strzebonski, A. "A Real Polynomial Decision Algorithm Using Arbitrary-Precision Floating Point Arithmetic."Reliable Comput.5, 337-346, 1999.Strzebonski, A. "Solving Algebraic Inequalities."Mathematica J.7, 525-541, 2000.Trott, M. "Polynomials in Inequalities." §1.2.3 inThe Mathematica GuideBook for Symbolics. New York: Springer-Verlag, pp. 50-78, 2006.http://www.mathematicaguidebooks.org/.

Referenced on Wolfram|Alpha

Cylindrical Algebraic Decomposition

Cite this as:

Strzebonski, Adam. "Cylindrical Algebraic Decomposition." FromMathWorld--A Wolfram Resource, created byEric W. Weisstein.https://mathworld.wolfram.com/CylindricalAlgebraicDecomposition.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp