Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Commutative


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

Two elementsx andy of a setS are said to be commutative under a binary operation* if they satisfy

 x*y=y*x.
(1)

Real numbers are commutative under addition

 x+y=y+x
(2)

and multiplication

 x·y=y·x.
(3)

TheWolfram Language attribute thatsets a function to be commutative isOrderless.


See also

Associative,Commute,Commutative Algebra,Commutative Diagram,Commuting Matrices,Commutative Monoid,Commutative Ring,Distributive,TransitiveExplore this topic in the MathWorld classroom

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Commutative." FromMathWorld--A Wolfram Web Resource.https://mathworld.wolfram.com/Commutative.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp