pid_namespaces(7) Miscellaneous Information Manualpid_namespaces(7)pid_namespaces - overview of Linux PID namespaces
For an overview of namespaces, seenamespaces(7). PID namespaces isolate the process ID number space, meaning that processes in different PID namespaces can have the same PID. PID namespaces allow containers to provide functionality such as suspending/resuming the set of processes in the container and migrating the container to a new host while the processes inside the container maintain the same PIDs. PIDs in a new PID namespace start at 1, somewhat like a standalone system, and calls tofork(2),vfork(2), orclone(2) will produce processes with PIDs that are unique within the namespace. Use of PID namespaces requires a kernel that is configured with theCONFIG_PID_NSoption.The namespace init process The first process created in a new namespace (i.e., the process created usingclone(2) with theCLONE_NEWPIDflag, or the first child created by a process after a call tounshare(2) using theCLONE_NEWPIDflag) has the PID 1, and is the "init" process for the namespace (seeinit(1)). This process becomes the parent of any child processes that are orphaned because a process that resides in this PID namespace terminated (see below for further details). If the "init" process of a PID namespace terminates, the kernel terminates all of the processes in the namespace via aSIGKILL signal. This behavior reflects the fact that the "init" process is essential for the correct operation of a PID namespace. In this case, a subsequentfork(2) into this PID namespace fail with the errorENOMEM; it is not possible to create a new process in a PID namespace whose "init" process has terminated. Such scenarios can occur when, for example, a process uses an open file descriptor for a/proc/pid/ns/pid file corresponding to a process that was in a namespace tosetns(2) into that namespace after the "init" process has terminated. Another possible scenario can occur after a call tounshare(2): if the first child subsequently created by afork(2) terminates, then subsequent calls tofork(2) fail withENOMEM. Only signals for which the "init" process has established a signal handler can be sent to the "init" process by other members of the PID namespace. This restriction applies even to privileged processes, and prevents other members of the PID namespace from accidentally killing the "init" process. Likewise, a process in an ancestor namespace can—subject to the usual permission checks described inkill(2)—send signals to the "init" process of a child PID namespace only if the "init" process has established a handler for that signal. (Within the handler, thesiginfo_t si_pid field described insigaction(2) will be zero.)SIGKILLorSIGSTOPare treated exceptionally: these signals are forcibly delivered when sent from an ancestor PID namespace. Neither of these signals can be caught by the "init" process, and so will result in the usual actions associated with those signals (respectively, terminating and stopping the process). Starting with Linux 3.4, thereboot(2) system call causes a signal to be sent to the namespace "init" process. Seereboot(2) for more details.Nesting PID namespaces PID namespaces can be nested: each PID namespace has a parent, except for the initial ("root") PID namespace. The parent of a PID namespace is the PID namespace of the process that created the namespace usingclone(2) orunshare(2). PID namespaces thus form a tree, with all namespaces ultimately tracing their ancestry to the root namespace. Since Linux 3.7, the kernel limits the maximum nesting depth for PID namespaces to 32. A process is visible to other processes in its PID namespace, and to the processes in each direct ancestor PID namespace going back to the root PID namespace. In this context, "visible" means that one process can be the target of operations by another process using system calls that specify a process ID. Conversely, the processes in a child PID namespace can't see processes in the parent and further removed ancestor namespaces. More succinctly: a process can see (e.g., send signals withkill(2), set nice values withsetpriority(2), etc.) only processes contained in its own PID namespace and in descendants of that namespace. A process has one process ID in each of the layers of the PID namespace hierarchy in which is visible, and walking back though each direct ancestor namespace through to the root PID namespace. System calls that operate on process IDs always operate using the process ID that is visible in the PID namespace of the caller. A call togetpid(2) always returns the PID associated with the namespace in which the process was created. Some processes in a PID namespace may have parents that are outside of the namespace. For example, the parent of the initial process in the namespace (i.e., theinit(1) process with PID 1) is necessarily in another namespace. Likewise, the direct children of a process that usessetns(2) to cause its children to join a PID namespace are in a different PID namespace from the caller ofsetns(2). Calls togetppid(2) for such processes return 0. While processes may freely descend into child PID namespaces (e.g., usingsetns(2) with a PID namespace file descriptor), they may not move in the other direction. That is to say, processes may not enter any ancestor namespaces (parent, grandparent, etc.). Changing PID namespaces is a one-way operation. TheNS_GET_PARENT ioctl(2) operation can be used to discover the parental relationship between PID namespaces; seeioctl_nsfs(2).setns(2) and unshare(2) semantics Calls tosetns(2) that specify a PID namespace file descriptor and calls tounshare(2) with theCLONE_NEWPIDflag cause children subsequently created by the caller to be placed in a different PID namespace from the caller. (Since Linux 4.12, that PID namespace is shown via the/proc/pid/ns/pid_for_children file, as described innamespaces(7).) These calls do not, however, change the PID namespace of the calling process, because doing so would change the caller's idea of its own PID (as reported bygetpid()), which would break many applications and libraries. To put things another way: a process's PID namespace membership is determined when the process is created and cannot be changed thereafter. Among other things, this means that the parental relationship between processes mirrors the parental relationship between PID namespaces: the parent of a process is either in the same namespace or resides in the immediate parent PID namespace. A process may callunshare(2) with theCLONE_NEWPIDflag only once. After it has performed this operation, its/proc/pid/ns/pid_for_children symbolic link will be empty until the first child is created in the namespace.Adoption of orphaned children When a child process becomes orphaned, it is reparented to the "init" process in the PID namespace of its parent (unless one of the nearer ancestors of the parent employed theprctl(2)PR_SET_CHILD_SUBREAPERcommand to mark itself as the reaper of orphaned descendant processes). Note that because of thesetns(2) andunshare(2) semantics described above, this may be the "init" process in the PID namespace that is theparent of the child's PID namespace, rather than the "init" process in the child's own PID namespace.Compatibility of CLONE_NEWPID with other CLONE_* flags In current versions of Linux,CLONE_NEWPIDcan't be combined withCLONE_THREAD. Threads are required to be in the same PID namespace such that the threads in a process can send signals to each other. Similarly, it must be possible to see all of the threads of a process in theproc(5) filesystem. Additionally, if two threads were in different PID namespaces, the process ID of the process sending a signal could not be meaningfully encoded when a signal is sent (see the description of thesiginfo_t type insigaction(2)). Since this is computed when a signal is enqueued, a signal queue shared by processes in multiple PID namespaces would defeat that. In earlier versions of Linux,CLONE_NEWPIDwas additionally disallowed (failing with the errorEINVAL) in combination withCLONE_SIGHAND(before Linux 4.3) as well asCLONE_VM(before Linux 3.12). The changes that lifted these restrictions have also been ported to earlier stable kernels./proc and PID namespaces A/proc filesystem shows (in the/proc/pid directories) only processes visible in the PID namespace of the process that performed the mount, even if the/proc filesystem is viewed from processes in other namespaces. After creating a new PID namespace, it is useful for the child to change its root directory and mount a new procfs instance at/proc so that tools such asps(1) work correctly. If a new mount namespace is simultaneously created by includingCLONE_NEWNSin theflags argument ofclone(2) orunshare(2), then it isn't necessary to change the root directory: a new procfs instance can be mounted directly over/proc. From a shell, the command to mount/proc is: $ mount -t proc proc /proc Callingreadlink(2) on the path/proc/self yields the process ID of the caller in the PID namespace of the procfs mount (i.e., the PID namespace of the process that mounted the procfs). This can be useful for introspection purposes, when a process wants to discover its PID in other namespaces./proc files/proc/sys/kernel/ns_last_pid(since Linux 3.3) This file (which is virtualized per PID namespace) displays the last PID that was allocated in this PID namespace. When the next PID is allocated, the kernel will search for the lowest unallocated PID that is greater than this value, and when this file is subsequently read it will show that PID. This file is writable by a process that has theCAP_SYS_ADMINor (since Linux 5.9)CAP_CHECKPOINT_RESTORE capability inside the user namespace that owns the PID namespace. This makes it possible to determine the PID that is allocated to the next process that is created inside this PID namespace.Miscellaneous When a process ID is passed over a UNIX domain socket to a process in a different PID namespace (see the description ofSCM_CREDENTIALSinunix(7)), it is translated into the corresponding PID value in the receiving process's PID namespace.Linux.
Seeuser_namespaces(7).
clone(2),reboot(2),setns(2),unshare(2),proc(5),capabilities(7),credentials(7),mount_namespaces(7),namespaces(7),user_namespaces(7),switch_root(8)
This page is part of theman-pages (Linux kernel and C library user-space interface documentation) project. Information about the project can be found at ⟨https://www.kernel.org/doc/man-pages/⟩. If you have a bug report for this manual page, see ⟨https://git.kernel.org/pub/scm/docs/man-pages/man-pages.git/tree/CONTRIBUTING⟩. This page was obtained from the tarball man-pages-6.15.tar.gz fetched from ⟨https://mirrors.edge.kernel.org/pub/linux/docs/man-pages/⟩ on 2025-08-11. If you discover any rendering problems in this HTML version of the page, or you believe there is a better or more up- to-date source for the page, or you have corrections or improvements to the information in this COLOPHON (which isnot part of the original manual page), send a mail to man-pages@man7.orgLinux man-pages 6.15 2025-05-17pid_namespaces(7)Pages that refer to this page:nsenter(1), unshare(1), clone(2), fork(2), getpid(2), NS_GET_USERNS(2const), pidfd_send_signal(2), reboot(2), setns(2), unshare(2), cap_get_proc(3), lttng-ust(3), proc_locks(5), proc_sys_kernel(5), capabilities(7), credentials(7), namespaces(7), user_namespaces(7)
HTML rendering created 2025-09-06 byMichael Kerrisk, author ofThe Linux Programming Interface. For details of in-depthLinux/UNIX system programming training courses that I teach, lookhere. Hosting byjambit GmbH. | ![]() |