Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Sexual Dimorphism and Mortality Bias in a Small Miocene North American Rhino,Menoceras arikarense: Insights into the Coevolution of Sexual Dimorphism and Sociality in Rhinos

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Rhinos are the only modern perissodactyls that possess cranial weapons similar to the horns, antlers and ossicones of modern ruminants. Yet, unlike ruminants, there is no clear relationship between sexual dimorphism and sociality. It is possible to extend the study of the coevolution of sociality and sexual dimorphism into extinct rhinos by examining the demographic patterns in large fossil assemblages. An assemblage of the North American early Miocene (∼22 million years ago) rhino,Menoceras arikarense, from Agate Springs National Monument, Nebraska, exhibits dimorphism in incisor size and nasal bone size, but there is no detectible dimorphism in body size. The degree of dimorphism of the nasal horn is greater than the degree of sexual dimorphism of any living rhino and more like that of modern horned ruminants. The greater degree of sexual dimorphism inMenoceras horns may relate to its relatively small body size and suggests that the horn had a more sex-specific function. It could be hypothesized thatMenoceras evolved a more gregarious type of sociality in which a fewer number of males were capable of monopolizing a larger number of females. Demographic patterns in theMenoceras assemblage indicate that males suffered from a localized risk of elevated mortality at an age equivalent to the years of early adulthood. This mortality pattern is typical of living rhinos and indicates that young males were susceptible to the aggressive behaviors of dominant individuals in areas conducive to fossilization (e.g., ponds, lakes, rivers).Menoceras mortality patterns do not suggest a type of sociality different from modern rhinos although a group forming type of sociality remains possible. Among both living and extinct rhinos, the severity of socially mediated mortality seems unrelated to the degree of sexual dimorphism. Thus, sexual dimorphism in rhinos is not consistent with traditional theories about the co-evolution of sexual dimorphism and sociality.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  • Alexander RD, Hoogland JL, Howard RD, Noonan KM, Sherman PW (1979) Sexual dimorphism and breeding systems in pinnipeds, ungulates, primates, and humans. In: Chagnon NA, Irons W (eds) Evolutionary biology and human social behavior: an anthropological perspective. Duxbury, Massachusetts, pp 402–435

    Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Antoine P-O (2002) Phylogenie et evolution des Elasmotheriina (Mammalia, Rhinocerotidae). Mém Mús Natl Hist Nat 188:1–359

    Google Scholar 

  • Barnosky AD (1985) Taphonomy and herd structure of the extinct Irish elk,Megaloceras giganteus. Science 228:340–344

    Article PubMed CAS  Google Scholar 

  • Benefit BR (1994) Phylogenetic, paleodemographic, and taphonomic implicationsVictoriapithecus deciduous teeth from Maboko, Kenya. Am J Phys Anthropol 95:277–331

    Article PubMed CAS  Google Scholar 

  • Benefit BR (1999)Victoriapithecus, the key to Old World monkey and catarrhine origins. Evol Anthropol 7:155–174

    Article  Google Scholar 

  • Berger J (1983) Ecology and catastrophic mortality in wild horses: implications for interpreting fossil assemblages. Science 220:1403–1404

    Article PubMed CAS  Google Scholar 

  • Berger J (1986) Wild hworses of the Great Basin: social competition and population size. The University of Chicago Press, Chicago

    Google Scholar 

  • Berger J (1988) Social system, resources, and phylogenetic inertia, an experimental test and its limitations. In: Slobodchikoff CN (ed) The ecology of social behaviour, Academic Press, San Diego, pp 157–186

    Google Scholar 

  • Berger J (1994) Science, conservation and black rhinos. J Mammal 75:98–308

    Article  Google Scholar 

  • Berger J, Cunningham C (1994a) Bison: mating and conservation in small populations. Columbia University Press, New York

    Google Scholar 

  • Berger J, Cunningham C (1994b) Phenotypic alterations, evolutionarily significant structures, and rhino conservation. Conserv Biol 8:833–840

    Article  Google Scholar 

  • Berger J, Cunningham C (1998) Natural variation in horn size and social dominance and their importance to the conservation of black rhinoceros. Conserv Biol 12:708–711

    Article  Google Scholar 

  • Berger J, Dulamtseren S, Cain S, Enkkhbileg D, Lichtman P, Namshir Z, Wingard G, Reading R (2001) Back-casting sociality in extinct species: new perspectives using mass death assemblages and sex ratios. Proc R Soc Lond [Biol] 268:131–139

    CAS  Google Scholar 

  • Bryant DJ (1991) Age-frequency profiles of micromammals and population density dynamics ofProheteromys floridanus (Rodentia) from the early Miocene Thomas Farm site, Florida (U.S.A.). Palaeogeogr Palaeoclimatol Palaeoecol 85:1–14

    Article  Google Scholar 

  • Borsuk-Bialynicka M (1973) Studies on the Pleistocene rhinocerosCoelodonta antiquitatis (Blumenbach). Palaeontol Pol 29:1–95

    Google Scholar 

  • Byers JA, Kitchen DW (1988) Mating system shifts in a pronghorn population. Behav Ecol Sociobiol 22:355–360

    Google Scholar 

  • Carrasco MA (1998) Variation and it implications on a population ofCupidinimus (Heteromyidae) from Hepburn’s Mesa, Montana. J Vertebr Paleontol 18:391–402

    Article  Google Scholar 

  • Cerdeño E (1995) Cladistic analysis of the family Rhinocerotidae (Perissodactyla). Am Mus Novit 3143:1–25

    Google Scholar 

  • Clark J (1970) Population dynamics ofLeptomeryx. Fieldiana 16:411–451

    Google Scholar 

  • Clutton-Brock TH, Albon SD, Guinness FE (1988) Reproductive success in male and female red deer. In: Clutton-Brock TH (ed) Reproductive success: studies of individual variation in contrasting breeding systems. University of Chicago Press, Chicago, pp 325–343

    Google Scholar 

  • Colbert MW (2006) Variation and species recognition in Eocene tapirs from Southern California. J Vertebr Paleontol 26:712–719

    Article  Google Scholar 

  • Coombs MC (1975) Sexual dimorphism in chalicotheres (Mammalia, Perissodactyla). Syst Zool 24:55–62

    Article  Google Scholar 

  • Cunningham C, Berger J (1997) Horn of darkness: rhinos on the edge. Oxford University Press, Oxford

    Google Scholar 

  • Dinerstein E (1991) Sexual dimorphism in the greater one-horned rhinoceros (Rhinoceros unicornis). J Mammal 72:450–457

    Article  Google Scholar 

  • Dinerstein E (2003) The return of the unicorns: the Natural history and conservation of the greater one-horned rhinoceros. Columbia University Press, New York

    Google Scholar 

  • Dinerstein E, Price L (1991) Demography and habitat use by greater one-horned rhinoceros in Nepal. J Wildl Manage 55:401–411

    Article  Google Scholar 

  • Dittus WP (1975) Population dynamics of the Toque monkey,Macaca sinica. In: Tuttle RH (ed) Socioecology and Psychology of Primates. Mouton Publishers, The Hague, pp 125–152

    Google Scholar 

  • Dittus WP (1977) The social regulation of population density and age–sex distribution in the Toque monkey. Behavior 63:281–322

    Google Scholar 

  • Dittus WP (1979) The evolution of behaviors regulating density and age-specific sex ratios in a primate population. Behavior 69:266–302

    Google Scholar 

  • Geist V, Bayer M (1988) Sexual dimorphism in the Cervidae and its relation to habitat. J Zool, Lond 214:45–53

    Article  Google Scholar 

  • Gingerich PD (1981) Variation, sexual dimorphism, and social structure in the early Eocene horseHyracotherium (Mammalia, Perissodactyla). Paleobiol 7:443–455

    Google Scholar 

  • Goddard J (1970) Age criteria and vital statistics of a black rhinoceros population. East Afr J Wild l8:105–121

    Google Scholar 

  • Hirth DH (2000) Behavioral ecology. In: Demarais S, Krausman PR (eds) Ecology and management of large mammals in North America. Prentice-Hall, Upper Saddle River, New Jersey, pp 756–791

    Google Scholar 

  • Hitchins PM (1978) Age determination of the black rhinoceros (Diceros bicornis Linn.) in Zululand. South Afr J Wildl Res 8:71–80

    Google Scholar 

  • Hitchins PM, Anderson JL (1983) Reproduction, population characteristics and management of the black rhinocerosDiceros bicornis minor in the Hluhluwe/Corridor/Umfolozi game reserve complex. South Afr J Wildl Res 13:78–85

    Google Scholar 

  • Hulbert RC (1982) Population dynamics of the three-toed horseNeohipparion from the late Miocene of Florida. Paleobiol 8:159–167

    Google Scholar 

  • Hulbert RC (1984) Paleoecology and population dynamics of the early Miocene (Hemmingfordian) horseParahippus leonensis from the Thomas Farm site, Florida. J Vertebr Paleontol 4:547–558

    Article  Google Scholar 

  • Hunt RM (1990) Taphonomy and sedimentology of Arikaree (lower Miocene) fluvial, eolian, and lacustrine paleoenvironments, Nebraska and Wyoming; a paleobiota entombed in fine-grained volcaniclastic rocks. Geol Soc Am Special Paper 244:69–111

    Google Scholar 

  • Janis C (1982) Evolution of horns in ungulates: ecology and paleoecology. Biol Rev 57:261–318

    Google Scholar 

  • Jarman P (1983) Mating system and sexual dimorphism in large, terrestrial, mammalian herbivores. Biol Rev Camb Philos Soc 58:485–520

    Google Scholar 

  • Jarman P (2000) Dimorphism in social Artiodactyla: selection upon females. In: Vrba E, Schaller GB (eds) Antelopes, deer and relatives: fossil record, behavioral ecology, systematics and conservation. Yale University Press, New Haven, pp 171–179

    Google Scholar 

  • Jarman P, Jarman MV (1973) Social behavior, population structure and reproduction potential in impala. East Afr Wildl J 11:329–38

    Google Scholar 

  • Kiltie RA (1985) Evolution and function of horns and hornlike organs in female ungulates. Biol J Linn Soc 24:299–320

    Google Scholar 

  • Klein RG (1981) Ungulate mortality and sedimentary facies in the late Tertiary Varswater formation, Langebaanweg, South Africa. Ann S Afr Mus 84:233–254

    Google Scholar 

  • Kurtén B (1953) On the variation and population dynamics of fossil and recent mammal populations. Acta Zool Fenn 76:1–121

    Google Scholar 

  • Kurtén B (1983) Variation and dynamics of a fossil antelope population. Paleobiol 9:62–69

    Google Scholar 

  • Laurie A (1982) Behavioural ecology of the greater one-horned rhinoceros (Rhinoceros unicornis). J Zool, Lond 196:307–341

    Article  Google Scholar 

  • Laurie A, Lang EM, Groves CP (1983) Rhinoceros unicornis. Mamm Species 211:1–6

    Article  Google Scholar 

  • Linklater WL (2000) Adaptive explaination of socio-ecology: lessons from the Equidae. Biol Rev Camb Philos Soc 75:1–20

    Article PubMed CAS  Google Scholar 

  • Loison A, Gaillard J-M, Pélabon C, Yoccoz NG (1999) What factors shape sexual size dimorphism in ungulates? Evol Ecol Res 1:611–633

    Google Scholar 

  • Lyman RL (1994) Vertebrate taphonomy. Cambridge University Press, New York

    Google Scholar 

  • MacFadden BJ (1992) Fossil horses: systematics, paleobiology, and evolution of the family Equidae. Cambridge University Press, New York

    Google Scholar 

  • Matthew WD (1924) Third contribution to the Snake Creek fauna. Bull Am Mus Nat Hist 50:59–210

    Google Scholar 

  • McDonald HG (1996) Population structure of the late Pliocene (Blancan) zebraEquussimplicidens (Perissodactyla: Equidae) from the Hagerman Horse Quarry, Idaho. In: Stewart KM, Seymour KL (eds) Paleoecology and paleoenvironments of late cenozoic mammals: tributes to the career of C.S. (Rufus) Churcher. University of Toronto Press, Toronto, pp 134–155

    Google Scholar 

  • Mead AJ (1998) Horn boss morphologies in Nebraska’s Miocene rhinoceroses. Proc Neb Acad Sci 108:49

    Google Scholar 

  • Mead AJ (2000) Sexual dimorphism and paleoecology inTeleoceras, a North American rhinoceros. Paleobiol 26:689–706

    Article  Google Scholar 

  • Mihlbachler MC (2003) Demography of late Miocene rhinoceroses (Teleoceras proterum andAphelops malacorhinus) from Florida: linking mortality and sociality in fossil assemblages. Paleobiol 29:412–428

    Article  Google Scholar 

  • Mihlbachler MC (2005) Linking sexual dimorphism and sociality in rhinoceroses: insights fromTeleocerasproterum andAphelops malacorhinus from the late Miocene of Florida. Bull Florida Mus Nat Hist 45:495–520

    Google Scholar 

  • Mihlbachler MC, Lucas SG, Emry RJ (2004) The holotype specimen ofMenodus giganteus and the “insoluble” problem of Chadronian brontothere taxonomy: New Mexico Mus Nat Hist Sci Bull 26:129–135

    Google Scholar 

  • Nowak RM (1999) Walker’s mammals of the world, 6th edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Owen-Smith RN (1975) The social ethology of the white rhinocerosCeratotherium simum (Burchell 1817). Z Tierpsychol 38:337–384

    Google Scholar 

  • Owen-Smith RN (1988) Megaherbivores: the influence of very large body size on ecology. Cambridge University Press, New York

    Google Scholar 

  • Packard C (1983) Sexual dimorphism: the horns of African antelopes. Science 221:1191–1193

    Article  Google Scholar 

  • Peterson OA (1906) The Miocene beds of Western Nebraska and Eastern Wyoming and their vertebrate faunae. Ann Carnegie Mus 4:21–72

    Google Scholar 

  • Peterson OA (1920) The American diceratheres. Mem Carnegie Mus 7:399–455

    Google Scholar 

  • Plavcan JM (2001) Sexual dimorphism in primate evolution. Yearb Phys Anthropol 44:25–53

    Article  Google Scholar 

  • Prothero DR (1998) Rhinocerotidae. In: Janis C, Scott KM, Jacobs LL (eds) Evolution of Tertiary mammals of North America. Vol. I: terrestrial carnivores, ungulates, and ungulate-like mammals. Cambridge University Press, New York, pp 595–605

    Google Scholar 

  • Prothero DR (2005) The evolution of North American rhinoceroses. Cambridge University Press, New York

    Google Scholar 

  • Prothero DR, Manning E, Hanson CB (1986) The phylogeny of the Rhinocerotoidea. Zool J Linn Soc 87:341–366

    Article  Google Scholar 

  • Putman RJ (1996) Competition and resource partitioning in temperate ungulate assemblies. Chapman and Hall, London

    Google Scholar 

  • Rachlow JL, Berger J (1995) Conservation implications of patterns of horn regeneration in dehorned white rhinos. Conserv Biol 11:84–91

    Article  Google Scholar 

  • Radinsky L (1963) Origin and early evolution of North American Tapiroidea. Peabody Mus Nat Hist Bull 17:1–106

    Google Scholar 

  • Radinsky L (1967)Hyrachyus,Chasmotherium, and the early evolution of helaletid tapiroids. Am Mus Novit 2313:1–23

    Google Scholar 

  • Ralls K, Brownell RL Jr, Ballou J (1980) Differential mortality by sex and age in mammals, with specific reference to the sperm whale. Rep Int Whal Comm, Spec Issue 2:233–243

    Google Scholar 

  • Rubenstein DI (1986) Ecology and sociality in horses and zebras. In: Rubenstein DI, Wrangham RW (eds) Ecological aspects of social evolution: birds and mammals. Princeton University Press, Princeton, pp 282–302

    Google Scholar 

  • Sall J, Lehman A (1996) JMP Start Statistics: A Guide to Statistics and Data Analysis Using JMP and JMP IN Software. Duxbury, New York

    Google Scholar 

  • SAS Institute Inc. (1985) Users guide: statistics. SAS Institute Inc, Cary, North Carolina

    Google Scholar 

  • Van Valen L (1964) Age in two fossil horse populations. Acta Zool 45:1–13

    Article  Google Scholar 

  • Voorhies MR (1969) Taphonomy and population dynamics of an early Pliocene Vertebrate Fauna, Knox County, Nebraska. Univ Wyo Contrib Geol Spec Pap 1:1–69

    Google Scholar 

  • Voorhies MR (1985) A Miocene rhinoceros herd buried in volcanic ash. Nat Geogr Soc Res Rep 19:671–688

    Google Scholar 

Download references

Acknowledgements

The ideas presented here benefited greatly from earlier discussions with John Eisenberg, Dave Webb, Jay O’Sullivan, and Dennis Ruez. I thank Jin Meng and Malcolm McKenna for access to fossil collections and Susan Bell and Robert Evander for their assistance with the vertebrate paleontology database and archives at the American Museum of Natural History. Florent Rivals, Tom Rothwell, and two anonymous reviewers provided valuable comments on the manuscript.

Author information

Authors and Affiliations

  1. Department of Anatomy, New York College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY, 11568-3808, USA

    Matthew C. Mihlbachler

Authors
  1. Matthew C. Mihlbachler

Corresponding author

Correspondence toMatthew C. Mihlbachler.

Rights and permissions

About this article

Cite this article

Mihlbachler, M.C. Sexual Dimorphism and Mortality Bias in a Small Miocene North American Rhino,Menoceras arikarense: Insights into the Coevolution of Sexual Dimorphism and Sociality in Rhinos.J Mammal Evol14, 217–238 (2007). https://doi.org/10.1007/s10914-007-9048-4

Download citation

Keywords

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp