Animazione che mostra l'inizio della costruzione della successione di Thue–Morse
Lasuccessione di Thue-Morse, chiamata anchesuccessione di Prouhet-Thue-Morse, è una sequenza dicifre binarie che trova applicazioni in vari settori dellamatematica.
La successione di Thue-Morse è stata originariamente studiata dal matematicoEugène Prouhet nel 1851, che la applicò allateoria dei numeri senza però definirla esplicitamente[3]. Il primo a farlo fu, nel 1906,Axel Thue, che usò la sequenza per fondare lacombinatoria delle parole[4][5]. Tuttavia, la successione fu portata all'attenzione della comunità internazionale solo nel 1921, grazie al lavoro diMarston Morse che la applicò allageometria differenziale[6].
La successione di Thue-Morse è stata riscoperta indipendentemente diverse volte, anche da matematici non professionisti. Per esempio ilgran maestro di scacchi, ex-campione del mondo edocente di matematicaMax Euwe ha scoperto nel 1929 un modo di usare la successione per aggirare una regola degliscacchi che considera la partita finita in patta in caso di ripetizioni continuate di sequenze di mosse (a quei tempi la regola richiedeva che le posizioni ripetute della scacchiera fossero consecutive, è stata poi modificata in modo che la triplice ripetizione anche non consecutiva di una posizione facesse terminare con una patta la partita) e prolungare infinitamente il gioco[7], sfruttando la sua proprietà di essere priva di sottostringhe ripetute tre volte consecutive.
Gli elementi della successione di Thue-Morse disposti in quadrati concentrici, dall'interno verso l'esterno. Qui i trattini corti rappresentano gli 0, e i lunghi gli 1. Si notino le differenze strutturali (evidenti negli angoli) tra i livelli pari e dispari.
Esistono diversi modi equivalenti di definire la successione di Thue-Morse.
L'-esimo numero della successione di Thue-Morse è 0 se l'espressione din inbase 2 contiene un numero pari di 1, ed è uno se ne contiene una quantità dispari. Per esempio l'espressione binaria del numero 5 è 101, che contiene due cifre 1: quindi il quinto simbolo della successione di Thue-Morse è 0. Denotiamo con l'-esimo numero della successione di Thue-Morse. Il matematicoJohn Conway ha definitonumero odioso[8] ogni numero intero tale che enumero malvagio[9] ogni numero intero tale che (si tratta di ungioco di parole, nellalingua inglese, traodious eevil, che significano "odioso" e "malvagio", eodd edeven, che significano "dispari" e "pari").
Questo significa che può essere ottenuta iniziando da uno 0 e operando la sostituzione tutti gli 0 con 01 e tutti gli 1 con 10, e ripetendola all'infinito. Si noti che questo procedimento lascia invariati i valori iniziali della stringa, mentre ogni iterazione raddoppia il numero di cifre.
La successione di Thue-Morse, se considerata come sequenza di bit, può essere definitaricorsivamente mediante lanegazione, aggiungendo a ogni passaggio alla sequenza il suo esatto opposto. Quando si posseggono i primi 2n elementi della stringa, si può così conoscerne i successivi 2n, che consistono nel bit opposto alla prima metà. Per esempio, sapendo che il primo bit è uno 0, dato che la sua negazione è 1 il bit successivo sarà 1; e dato che la negazione di 01 è 10 i successivi due bit saranno 10; e così via. I primi passaggi sono i seguenti:
Costruzione della sequenza di Thue-Morse con il metodo della negazione bit per bit
Cinquematrici binarie quadrate che se lette linea per linea esprimono i primi elementi della successione di Thue-Morse. Ciascuna è ottenuta accostando in un quadrato quattro delle matrici precedenti, di cui due[10] ribaltate.
Essendo la successione di Thue-Morse costruibile per negazioni e aggiunte successive, tramite il metodo della negazione dei blocchi di bit, essa contiene molti quadrati: ossiasottostringhe ripetute nella formaxx, dovex è una sequenza di bit. Non ci sono invece cubi, cioè stringhe nella formaxxx[11]. Non vi sono nemmeno quadrati sovrapposti, cioè stringhe 0x0x0 oppure 1x1x1.[12] Per tutti gli, il pezzo della successione di Thue-Morse dall'inizio a èpalindroma. Inoltre, contando gli 1 tra due 0 consecutivi in (cioè fino a) e chiamando come la stringa ottenuta concatenando tali valori (per esempio e), è sempre una stringa palindroma epriva di quadrati[11]. Questo perché non contiene mai quadrati sovrapposti e è sempre palindromo.
La successione di Thue-Morse, pur non essendo unasuccessione periodica, è unasequenza ricorrente: ciò vuol dire che, prendendo una qualunque stringa al suo interno, esiste sempre una lunghezza (solitamente molto più grande della lunghezza di) tale che qualunque pezzo della successione contenga sempre almeno una volta. L'esponente critico della successione è 2.[13] Definendo un'endofunzione sull'insieme delle sequenze binarie, che operi su una sequenza sostituendo tutti gli 0 con 01 e tutti gli 1 con 10, la successione di Thue-Morse rimarrà invariata dall'applicazione di: ossia, e è dunque unpunto fisso di. L'unico altro punto fisso è quello che si ottiene negando la successione di Thue-Morse stessa, ossia sostituendo tutti gli 0 con 1 e viceversa; si tratta quindi sostanzialmente dell'unico punto fisso della funzione.
per ogni esponente intero da 1 a. Il problema ha sempre almeno una soluzione se è unmultiplo di, che si ottiene mettendo nel sottoinsieme i numeri per cui (cioè i numeri malvagi) e nel sottoinsieme i numeri per cui (i numeri odiosi), o viceversa.
Dato un qualunque insieme di elementi disponibili in unaprogressione aritmetica, dalteorema binomiale segue inoltre che se è unmultiplo di esiste sempre almeno una partizione dell'insieme delle-esime potenze degli elementi di in due sottoinsiemi le cui somme degli elementi siano uguali.
Ungrafico di Turtle è una curva ottenuta in base a una sequenza e a uno schema di istruzioni prefissato. La successione di Thue-Morse codifica lacurva di Koch, usando come input e le seguenti istruzioni:
La successione di Thue-Morse fornisce una soluzione ai problemi di distribuzione di risorse tra due contendenti. Per esempio, se A e B vogliono spartirsi un gruppo di elementi, volendo trovare un modo per evitare che uno dei due abbia la possibilità di scegliere elementi di qualità maggiore occorre che ad A spetti la 1°, 4°, 6°, 7°, ecc. scelta (uno più i numeri ordinali malvagi) e a B la 2°, 3°, 5°, 8°, ecc. scelta (uno più i numeri odiosi). Questa proprietà può anche essere applicata, per esempio, per suddividere il contenuto di una caffettiera in un dato numero di tazze di caffè con uguale concentrazione disoluti, e quindi con uguale sapore[17][18].Questo è stato provato dal matematicoRobert Richman che, pur senza nominare esplicitamente la successione, ha descritto le relazioni dellefunzioni gradino descritte da Tn nell'intervallo [0,1] con lafunzione di Walsh e lafunzione di Rademacher. Richman ha mostrato che la loron-esimaderivata può essere espressa in termini di Tn, e che quindi la funzione a gradino descritta da Tn èortogonale aipolinomi digradon-1[17].
^ Dalia Krieger,On critical exponents in fixed points of non-erasing morphisms, in Oscar H. Ibarra, Zhe Dang (a cura di),Developments in Language Theory: Proceedings 10th International Conference, DLT 2006, Santa Barbara, CA, USA, June 26-29, 2006, Lecture Notes in Computer Science, vol. 4036, Springer-Verlag, 2006, pp. 280-291,ISBN3-540-35428-X.
^(EN) Woods, D. R.,Problem Proposal E2692, inAmerican Mathematical Monthly, vol. 85, 1978, p. 48.
^ Robbins, D.,Solution to Problem E2692, inAmerican Mathematical Monthly, vol. 86, 1979, pp. 394-295.
(EN) M. Lothaire,Algebraic combinatorics on words, With preface by Jean Berstel and Dominique Perrin, Encyclopedia of Mathematics and Its Applications, vol. 90, Reprint of the 2002 hardback, Cambridge University Press, 2011,ISBN978-0-521-18071-9,Zbl1221.68183.
(EN) M. Lothaire,Applied combinatorics on words, A collective work by Jean Berstel, Dominique Perrin, Maxime Crochemore, Eric Laporte, Mehryar Mohri, Nadia Pisanti, Marie-France Sagot, Gesine Reinert, Sophie Schbath, Michael Waterman, Philippe Jacquet, Wojciech Szpankowski, Dominique Poulalhon, Gilles Schaeffer, Roman Kolpakov, Gregory Koucherov, Jean-Paul Allouche and Valérie Berthé, Encyclopedia of Mathematics and Its Applications, vol. 105, Cambridge, Cambridge University Press, 2005,ISBN0-521-84802-4,Zbl1133.68067.
(EN) N. Pytheas Fogg,Substitutions in dynamics, arithmetics and combinatorics, Editors Berthé, Valérie; Ferenczi, Sébastien; Mauduit, Christian; Siegel, A., Lecture Notes in Mathematics, vol. 1794, Berlin, Springer-Verlag, 2002,ISBN3-540-44141-7,Zbl1014.11015.
(EN) Allouche, J.-P. and Cosnard, M. "The Komornik-Loreti Constant Is Transcendental."Amer. Math. Monthly107, 448-449, 2000.
(EN) Allouche, J.-P. and Shallit, J. "The Ubiquitous Prouhet-Thue-Morse Sequence." InSequences and Their applications, Proc. SETA'98 (Ed. C. Ding, T. Helleseth, and H. Niederreiter). New York: Springer-Verlag, pp. 1–16, 1999.
(EN) Allouche, J.-P. and Shallit, J. "Example 5.1.2 (The Thue-Morse Sequence)."Automatic Sequences: Theory, Applications, Generalizations. Cambridge, England: Cambridge University Press, pp. 152–153, 2003.