|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Defined in header <atomic> | ||
extern"C"void atomic_thread_fence(std::memory_order order)noexcept; | (since C++11) | |
Establishesmemory synchronization ordering of non-atomic and relaxed atomic accesses, as instructed byorder, without an associated atomic operation. Note however, that at least one atomic operation is required to set up the synchronization, as described below.
Contents |
A release fenceF in threadA synchronizes-with atomicacquire operationY in threadB, if
X (with any memory order),Y reads the value written byX (or the value would be written byrelease sequence headed byX ifX were a release operation),F is sequenced-beforeX in threadA.In this case, all non-atomic and relaxed atomic stores that aresequenced-beforeF in threadA willhappen-before all non-atomic and relaxed atomic loads from the same locations made in threadB afterY.
An atomicrelease operationX in threadA synchronizes-with an acquire fenceF in threadB, if
Y (with any memory order),Y reads the value written byX (or by therelease sequence headed by X),Y is sequenced-beforeF in threadB.In this case, all non-atomic and relaxed atomic stores that aresequenced-beforeX in threadA willhappen-before all non-atomic and relaxed atomic loads from the same locations made in threadB afterF.
A release fenceFA in threadA synchronizes-with an acquire fenceFB in threadB, if
M,X (with any memory order) that modifiesM in threadA,FA is sequenced-beforeX in threadA,Y (with any memory order) in threadB,Y reads the value written byX (or the value would be written byrelease sequence headed byX ifX were a release operation),Y is sequenced-beforeFB in threadB.In this case, all non-atomic and relaxed atomic stores that aresequenced-beforeFA in threadA willhappen-before all non-atomic and relaxed atomic loads from the same locations made in threadB afterFB.
Depending on the value of theorder parameter, the effects of this call are:
| order | - | the memory ordering executed by this fence |
On x86 (including x86-64),atomic_thread_fence functions issue no CPU instructions and only affect compile-time code motion, except forstd::atomic_thread_fence(std::memory_order_seq_cst).
atomic_thread_fence imposes stronger synchronization constraints than an atomic store operation with the samestd::memory_order. While an atomic store-release operation prevents all preceding reads and writes from moving past the store-release, anatomic_thread_fence withstd::memory_order_release ordering prevents all preceding reads and writes from moving past all subsequent stores.
Fence-fence synchronization can be used to add synchronization to a sequence of several relaxed atomic operations, for example:
// Globalstd::string computation(int);void print(std::string); std::atomic<int> arr[3]={-1,-1,-1};std::string data[1000];//non-atomic data // Thread A, compute 3 values.void ThreadA(int v0,int v1,int v2){// assert(0 <= v0, v1, v2 < 1000); data[v0]= computation(v0); data[v1]= computation(v1); data[v2]= computation(v2); std::atomic_thread_fence(std::memory_order_release);std::atomic_store_explicit(&arr[0], v0,std::memory_order_relaxed);std::atomic_store_explicit(&arr[1], v1,std::memory_order_relaxed);std::atomic_store_explicit(&arr[2], v2,std::memory_order_relaxed);} // Thread B, prints between 0 and 3 values already computed.void ThreadB(){int v0=std::atomic_load_explicit(&arr[0],std::memory_order_relaxed);int v1=std::atomic_load_explicit(&arr[1],std::memory_order_relaxed);int v2=std::atomic_load_explicit(&arr[2],std::memory_order_relaxed); std::atomic_thread_fence(std::memory_order_acquire);// v0, v1, v2 might turn out to be -1, some or all of them.// Otherwise it is safe to read the non-atomic data because of the fences:if(v0!=-1) print(data[v0]);if(v1!=-1) print(data[v1]);if(v2!=-1) print(data[v2]);}
Scan an array of mailboxes, and process only the ones intended for us, without unnecessary synchronization.This example uses atomic-fence synchronization.
constint num_mailboxes=32;std::atomic<int> mailbox_receiver[num_mailboxes];std::string mailbox_data[num_mailboxes]; // The writer threads update non-atomic shared data// and then update mailbox_receiver[i] as follows:mailbox_data[i]= ...;std::atomic_store_explicit(&mailbox_receiver[i], receiver_id,std::memory_order_release); // Reader thread needs to check all mailbox[i], but only needs to sync with one.for(int i=0; i< num_mailboxes;++i)if(std::atomic_load_explicit(&mailbox_receiver[i],std::memory_order_relaxed)== my_id){// synchronize with just one writer std::atomic_thread_fence(std::memory_order_acquire);// guaranteed to observe everything done in the writer thread// before the atomic_store_explicit() do_work(mailbox_data[i]);}
(C++11) | defines memory ordering constraints for the given atomic operation (enum)[edit] |
(C++11) | fence between a thread and a signal handler executed in the same thread (function)[edit] |
C documentation foratomic_thread_fence | |