- Notifications
You must be signed in to change notification settings - Fork29
PyTorch-Based Evaluation Tool for Co-Saliency Detection
NotificationsYou must be signed in to change notification settings
zzhanghub/eval-co-sod
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Automatically evaluate 8 metrics and draw 4 types of curves
⭐ Project Home »
Eval Co-SOD is an extended version ofEvaluate-SOD forco-saliency detection task.It provides eight metrics and four curves:
- Metrics:
- Mean Absolute Error (MAE)
- Maximum F-measure (max-Fm)
- Mean F-measure (mean-Fm)
- Maximum E-measure (max-Em)
- Mean E-measure (mean-Em)
- S-measure (Sm)
- Average Precision (AP)
- Area Under Curve (AUC)
- Curves:
- Precision-Recall (PR) curve
- Receiver Operating Characteristic (ROC) curve
- F-measure curve
- E-measure curve
- PyTorch >= 1.0
The structure ofroot_dir
should be organized as follows:
.├── gt│ ├── dataset1│ │ ├── accordion│ │ │ ├── 51499.png│ │ │ └── 186605.png│ │ └── alarm clock│ │ ├── 51499.png│ │ └── 186605.png│ ├── dataset2 ...│ └── dataset3 ...│ └── pred └── method1 │ ├── dataset1 │ │ ├── accordion │ │ │ ├── 51499.png │ │ │ └── 186605.png │ │ └── alarm clock │ │ ├── 51499.png │ │ └── 186605.png │ ├── dataset2 .. │ └── dataset3 ... └──method2 ...
- Configure
eval.sh
--methods method1+method2+method3 (Multiple items are connected with'+')--datasets dataset1+dataset2+dataset3--save_dir ./Result (Path to save results)--root_dir ../SalMaps
- Run by
sh eval.sh
- Configure
plot_curve.sh
--methods method1+method2+method3 (Multiple items are connected with'+')--datasets dataset1+dataset2+dataset3--out_dir ./Result/Curves (Path to save results)--res_dir ./Result/Detail
- Run by
sh plot_curve.sh
If you find this tool is useful for your research, please cite the following papers.
@inproceedings{zhang2020gicd, title={Gradient-Induced Co-Saliency Detection}, author={Zhang, Zhao and Jin, Wenda and Xu, Jun and Cheng, Ming-Ming}, booktitle={European Conference on Computer Vision (ECCV)}, year={2020}}@inproceedings{fan2020taking, title={Taking a Deeper Look at the Co-salient Object Detection}, author={Fan, Deng-Ping and Lin, Zheng and Ji, Ge-Peng and Zhang, Dingwen and Fu, Huazhu and Cheng, Ming-Ming}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2020} }
If you have any questions, feel free to contact me viazzhang🥳mail😲nankai😲edu😲cn