Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

PyTorch-Based Evaluation Tool for Co-Saliency Detection

NotificationsYou must be signed in to change notification settings

zzhanghub/eval-co-sod

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


Logo

PyTorch-Based Evaluation Tool for Co-Saliency Detection

Automatically evaluate 8 metrics and draw 4 types of curves
⭐ Project Home »


Eval Co-SOD is an extended version ofEvaluate-SOD forco-saliency detection task.It provides eight metrics and four curves:

  • Metrics:
    • Mean Absolute Error (MAE)
    • Maximum F-measure (max-Fm)
    • Mean F-measure (mean-Fm)
    • Maximum E-measure (max-Em)
    • Mean E-measure (mean-Em)
    • S-measure (Sm)
    • Average Precision (AP)
    • Area Under Curve (AUC)
  • Curves:
    • Precision-Recall (PR) curve
    • Receiver Operating Characteristic (ROC) curve
    • F-measure curve
    • E-measure curve

Prerequisites

  • PyTorch >= 1.0

Usage

1. Prepare your data

The structure ofroot_dir should be organized as follows:

.├── gt│   ├── dataset1│   │   ├── accordion│   │   │   ├── 51499.png│   │   │   └── 186605.png│   │   └── alarm clock│   │       ├── 51499.png│   │       └── 186605.png│   ├── dataset2 ...│   └── dataset3 ...│ └── pred    └── method1    │   ├── dataset1    │   │   ├── accordion    │   │   │   ├── 51499.png    │   │   │   └── 186605.png    │   │   └── alarm clock    │   │       ├── 51499.png    │   │       └── 186605.png    │   ├── dataset2 ..    │   └── dataset3 ...    └──method2 ...

2. Evaluate on the 8 metrices

  1. Configureeval.sh
--methods method1+method2+method3 (Multiple items are connected with'+')--datasets dataset1+dataset2+dataset3--save_dir ./Result (Path to save results)--root_dir ../SalMaps
  1. Run by
sh eval.sh

3. Draw the 4 types of curves

  1. Configureplot_curve.sh
--methods method1+method2+method3 (Multiple items are connected with'+')--datasets dataset1+dataset2+dataset3--out_dir ./Result/Curves (Path to save results)--res_dir ./Result/Detail
  1. Run by
sh plot_curve.sh

Citation

If you find this tool is useful for your research, please cite the following papers.

@inproceedings{zhang2020gicd, title={Gradient-Induced Co-Saliency Detection}, author={Zhang, Zhao and Jin, Wenda and Xu, Jun and Cheng, Ming-Ming}, booktitle={European Conference on Computer Vision (ECCV)}, year={2020}}@inproceedings{fan2020taking,  title={Taking a Deeper Look at the Co-salient Object Detection},   author={Fan, Deng-Ping and Lin, Zheng and Ji, Ge-Peng and Zhang, Dingwen and Fu, Huazhu and Cheng, Ming-Ming},     booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},  year={2020} }

Contact

If you have any questions, feel free to contact me viazzhang🥳mail😲nankai😲edu😲cn


[8]ページ先頭

©2009-2025 Movatter.jp