- Notifications
You must be signed in to change notification settings - Fork0
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)
License
way2coder/pytorch-playground
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support
- mnist, svhn
- cifar10, cifar100
- stl10
- alexnet
- vgg16, vgg16_bn, vgg19, vgg19_bn
- resnet18, resnet34, resnet50, resnet101, resnet152
- squeezenet_v0, squeezenet_v1
- inception_v3
Here is an example for MNIST dataset. This will download the dataset and pre-trained model automatically.
import torchfrom torch.autograd import Variablefrom utee import selectormodel_raw, ds_fetcher, is_imagenet = selector.select('mnist')ds_val = ds_fetcher(batch_size=10, train=False, val=True)for idx, (data, target) in enumerate(ds_val): data = Variable(torch.FloatTensor(data)).cuda() output = model_raw(data)Also, if want to train the MLP model on mnist, simply runpython mnist/train.py
python3 setup.py develop --userWe provide precomputed imagenet validation dataset with 224x224x3 size. We first resize the shorter size of image to 256, then we crop 224x224 image in the center. Then we encode the cropped images to jpg string and dump to pickle.
cd script- Download the
val224_compressed.pkl(Tsinghua /Google Drive) python convert.py(needs 48G memory, thanks@jnorwood )
We also provide a simple demo to quantize these models to specified bit-width with several methods, including linear method, minmax method and non-linear method.
quantize --type cifar10 --quant_method linear --param_bits 8 --fwd_bits 8 --bn_bits 8 --ngpu 1
We evaluate the performance of popular dataset and models with linear quantized method. The bit-width of running mean and running variance in BN are 10 bits for all results. (except for 32-float)
| Model | 32-float | 12-bit | 10-bit | 8-bit | 6-bit |
|---|---|---|---|---|---|
| MNIST | 98.42 | 98.43 | 98.44 | 98.44 | 98.32 |
| SVHN | 96.03 | 96.03 | 96.04 | 96.02 | 95.46 |
| CIFAR10 | 93.78 | 93.79 | 93.80 | 93.58 | 90.86 |
| CIFAR100 | 74.27 | 74.21 | 74.19 | 73.70 | 66.32 |
| STL10 | 77.59 | 77.65 | 77.70 | 77.59 | 73.40 |
| AlexNet | 55.70/78.42 | 55.66/78.41 | 55.54/78.39 | 54.17/77.29 | 18.19/36.25 |
| VGG16 | 70.44/89.43 | 70.45/89.43 | 70.44/89.33 | 69.99/89.17 | 53.33/76.32 |
| VGG19 | 71.36/89.94 | 71.35/89.93 | 71.34/89.88 | 70.88/89.62 | 56.00/78.62 |
| ResNet18 | 68.63/88.31 | 68.62/88.33 | 68.49/88.25 | 66.80/87.20 | 19.14/36.49 |
| ResNet34 | 72.50/90.86 | 72.46/90.82 | 72.45/90.85 | 71.47/90.00 | 32.25/55.71 |
| ResNet50 | 74.98/92.17 | 74.94/92.12 | 74.91/92.09 | 72.54/90.44 | 2.43/5.36 |
| ResNet101 | 76.69/93.30 | 76.66/93.25 | 76.22/92.90 | 65.69/79.54 | 1.41/1.18 |
| ResNet152 | 77.55/93.59 | 77.51/93.62 | 77.40/93.54 | 74.95/92.46 | 9.29/16.75 |
| SqueezeNetV0 | 56.73/79.39 | 56.75/79.40 | 56.70/79.27 | 53.93/77.04 | 14.21/29.74 |
| SqueezeNetV1 | 56.52/79.13 | 56.52/79.15 | 56.24/79.03 | 54.56/77.33 | 17.10/32.46 |
| InceptionV3 | 76.41/92.78 | 76.43/92.71 | 76.44/92.73 | 73.67/91.34 | 1.50/4.82 |
Note: ImageNet 32-float models are directly from torchvision
Here we give an overview of selected arguments ofquantize.py
| Flag | Default value | Description & Options |
|---|---|---|
| type | cifar10 | mnist,svhn,cifar10,cifar100,stl10,alexnet,vgg16,vgg16_bn,vgg19,vgg19_bn,resent18,resent34,resnet50,resnet101,resnet152,squeezenet_v0,squeezenet_v1,inception_v3 |
| quant_method | linear | quantization method:linear,minmax,log,tanh |
| param_bits | 8 | bit-width of weights and bias |
| fwd_bits | 8 | bit-width of activation |
| bn_bits | 32 | bit-width of running mean and running vairance |
| overflow_rate | 0.0 | overflow rate threshold for linear quantization method |
| n_samples | 20 | number of samples to make statistics for activation |
About
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
Packages0
Languages
- Python100.0%