|
1 | 1 | #10. Factor Analysis |
2 | 2 |
|
| 3 | + |
| 4 | + |
| 5 | +<figure><imgsrc="../.gitbook/assets/image (136).png"alt=""width="267"><figcaption></figcaption></figure> |
| 6 | + |
| 7 | +1. Click on_**Factor Analysis**_ in the_**Statistics**_ category |
| 8 | + |
| 9 | + |
| 10 | + |
| 11 | +<figure><imgsrc="../.gitbook/assets/image (137).png"alt=""width="563"><figcaption></figcaption></figure> |
| 12 | + |
| 13 | +2._**Install Package**_: You can automatically_**Import**_ the necessary packages for factor analysis. |
| 14 | +3._**Data**_: Select the data for factor analysis. You can also choose specific conditions using the[_**Subset**_](../data-analysis/5.-subset.md) option. |
| 15 | +4._**Variable**_: Choose the variables from the selected data for factor analysis. |
| 16 | +5._**Rotation**_: Select a rotation method to analyze which factors best explain the data. |
| 17 | +6._**Method**_: Choose a factor analysis method: |
| 18 | +*_**Principal**_: Principal Factor Analysis |
| 19 | +*_ML_: Maximum Likelihood Factor Analysis |
| 20 | +*_Minres_: Minimum Residual Factor Analysis |
| 21 | +7._**Impute**_: Select a method for handling missing values: |
| 22 | +***Drop**: Remove rows with missing values. |
| 23 | +***Mean / Median**: Replace missing values with the mean or median. |
| 24 | +8._**Extract**_: Decide on the criteria for extracting factors and specify the number of factors to extract. |
| 25 | +9._**Display**_: Visualize the results. |
| 26 | +10._**Code View**_: Preview the generated code. |
| 27 | +11._**Data View**_: Preview the resulting data. |
| 28 | +12._**Run**_: Execute the code. |
| 29 | + |