@@ -32,6 +32,7 @@ define([
3232"name" :"Series" ,
3333"library" :"pandas" ,
3434"description" :"1 dimension array with same data types" ,
35+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.Series.html" ,
3536"code" :"${o0} = pd.Series(${i0}${index}${name})" ,
3637"options" :[
3738{
@@ -64,6 +65,7 @@ define([
6465"name" :"DataFrame" ,
6566"library" :"pandas" ,
6667"description" :"2 dimension data table type pandas variable" ,
68+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html" ,
6769"code" :"${o0} = pd.DataFrame(${i0}${index}${columns})" ,
6870"options" :[
6971{
@@ -98,6 +100,7 @@ define([
98100"name" :"Index" ,
99101"library" :"pandas" ,
100102"description" :"Create index object" ,
103+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.Index.html" ,
101104"code" :"${o0} = pd.Index(${data}${dtype}${copy}${name}${tupleize_cols})" ,
102105"options" :[
103106{
@@ -162,6 +165,7 @@ define([
162165"name" :"Read CSV" ,
163166"library" :"pandas" ,
164167"description" :"" ,
168+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html" ,
165169"code" :"${o0} = pd.read_csv(${i0}${encoding}${header}${sep}${names}${usecols}${index_col}${na_values}${skiprows}${nrows}${chunksize}${etc})" ,
166170"options" :[
167171{
@@ -250,6 +254,7 @@ define([
250254"name" :"To CSV" ,
251255"library" :"pandas" ,
252256"description" :"dataframe to csv" ,
257+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_csv.html" ,
253258"code" :"${i0}.to_csv(${i1}${encoding}${header}${index}${sep}${na_rep}${columns}${etc})" ,
254259"options" :[
255260{
@@ -320,6 +325,7 @@ define([
320325"name" :"Merge" ,
321326"library" :"pandas" ,
322327"description" :"Merge 2 objects" ,
328+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.merge.html" ,
323329"code" :"${o0} = pd.merge(${i0}, ${i1}${left_on}${right_on}${how}${sort})" ,
324330"options" :[
325331{
@@ -390,6 +396,7 @@ define([
390396"name" :"Join" ,
391397"library" :"pandas" ,
392398"description" :"Merge multiple objects" ,
399+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.join.html" ,
393400"code" :"${o0} = ${i0}.join(${i1}${on}${how}${sort}${lsuffix}${rsuffix})" ,
394401"options" :[
395402{
@@ -469,6 +476,7 @@ define([
469476"name" :"Concat" ,
470477"library" :"pandas" ,
471478"description" :"Merge multiple objects" ,
479+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.concat.html" ,
472480"code" :"${o0} = pd.concat([${i0}]${index}${axis}${sort}${join})" ,
473481"options" :[
474482{
@@ -540,6 +548,7 @@ define([
540548"name" :"Sort By Index" ,
541549"library" :"pandas" ,
542550"description" :"Sort by index" ,
551+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_index.html" ,
543552"code" :"${o0} = ${i0}.sort_index(${axis}${ascending}${inplace}${kind})" ,
544553"options" :[
545554{
@@ -624,6 +633,7 @@ define([
624633"name" :"Group By" ,
625634"library" :"pandas" ,
626635"description" :"Group DataFrame/Series" ,
636+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html" ,
627637"code" :"${o0} = ${i0}.groupby(${level}${axis}${sort}${as_index})" ,
628638"options" :[
629639{
@@ -692,6 +702,7 @@ define([
692702"name" :"Period" ,
693703"library" :"pandas" ,
694704"description" :"Create Period object" ,
705+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.Period.html" ,
695706"code" :"${o0} = pd.Period(${i0}${freq}${year}${month}${day})" ,
696707"options" :[
697708{
@@ -759,6 +770,7 @@ define([
759770"name" :"Drop NA" ,
760771"library" :"pandas" ,
761772"description" :"" ,
773+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.dropna.html" ,
762774"code" :"${o0} = ${i0}.dropna(${axis}${how}${thresh})" ,
763775"options" :[
764776{
@@ -823,6 +835,7 @@ define([
823835"name" :"Fill NA" ,
824836"library" :"pandas" ,
825837"description" :"replace null using value" ,
838+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.fillna.html" ,
826839"code" :"${o0} = ${i0}.fillna(${value}${axis}${method}${inplace}${limit})" ,
827840"options" :[
828841{
@@ -902,6 +915,7 @@ define([
902915"name" :"Get Duplicates" ,
903916"library" :"pandas" ,
904917"description" :"Get duplicates" ,
918+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.duplicated.html" ,
905919"code" :"${o0} = ${i0}.duplicated(${keep})" ,
906920"options" :[
907921{
@@ -986,6 +1000,7 @@ define([
9861000"name" :"Scala Replace" ,
9871001"library" :"pandas" ,
9881002"description" :"Replace scala value" ,
1003+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.replace.html" ,
9891004"code" :"${o0} = ${i0}.replace(${to_replace}${value}${method})" ,
9901005"options" :[
9911006{
@@ -1038,6 +1053,7 @@ define([
10381053"name" :"List-like Replace" ,
10391054"library" :"pandas" ,
10401055"description" :"Replace values using list" ,
1056+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.replace.html" ,
10411057"code" :"${o0} = ${i0}.replace(${to_replace}${value}${method})" ,
10421058"options" :[
10431059{
@@ -1090,6 +1106,7 @@ define([
10901106"name" :"Dict-like Replace" ,
10911107"library" :"pandas" ,
10921108"description" :"Replace values using dictionary" ,
1109+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.replace.html" ,
10931110"code" :"${o0} = ${i0}.replace(${to_replace}${value}${method})" ,
10941111"options" :[
10951112{
@@ -1142,6 +1159,7 @@ define([
11421159"name" :"Regular Expression Replace" ,
11431160"library" :"pandas" ,
11441161"description" :"" ,
1162+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.replace.html" ,
11451163"code" :"${o0} = ${i0}.replace(${to_replace}${value}${method}${regex})" ,
11461164"options" :[
11471165{
@@ -1203,6 +1221,7 @@ define([
12031221"name" :"Sum" ,
12041222"library" :"pandas" ,
12051223"description" :"" ,
1224+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sum.html" ,
12061225"code" :"${o0} = ${i0}.sum(${axis}${skipna}${level})" ,
12071226"options" :[
12081227{
@@ -1262,6 +1281,7 @@ define([
12621281"name" :"Mean" ,
12631282"library" :"pandas" ,
12641283"description" :"" ,
1284+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mean.html" ,
12651285"code" :"${o0} = ${i0}.mean(${axis}${skipna}${level})" ,
12661286"options" :[
12671287{
@@ -1321,6 +1341,7 @@ define([
13211341"name" :"Count" ,
13221342"library" :"pandas" ,
13231343"description" :"Count except NA values" ,
1344+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.count.html" ,
13241345"code" :"${o0} = ${i0}.count(${axis}${skipna}${level})" ,
13251346"options" :[
13261347{
@@ -1380,6 +1401,7 @@ define([
13801401"name" :"Max" ,
13811402"library" :"pandas" ,
13821403"description" :"" ,
1404+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.max.html" ,
13831405"code" :"${o0} = ${i0}.max(${axis}${skipna}${level})" ,
13841406"options" :[
13851407{
@@ -1439,6 +1461,7 @@ define([
14391461"name" :"Min" ,
14401462"library" :"pandas" ,
14411463"description" :"" ,
1464+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.min.html" ,
14421465"code" :"${o0} = ${i0}.min(${axis}${skipna}${level})" ,
14431466"options" :[
14441467{
@@ -1498,6 +1521,7 @@ define([
14981521"name" :"Median" ,
14991522"library" :"pandas" ,
15001523"description" :"Median(50%)" ,
1524+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.median.html" ,
15011525"code" :"${o0} = ${i0}.median(${axis}${skipna}${level}${numeric_only})" ,
15021526"options" :[
15031527{
@@ -1574,6 +1598,7 @@ define([
15741598"name" :"Std" ,
15751599"library" :"pandas" ,
15761600"description" :"" ,
1601+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.std.html" ,
15771602"code" :"${o0} = ${i0}.std(${axis}${skipna}${level}${numeric_only})" ,
15781603"options" :[
15791604{
@@ -1650,6 +1675,7 @@ define([
16501675"name" :"Quantile" ,
16511676"library" :"pandas" ,
16521677"description" :"Calculate quantile between 0 and 1" ,
1678+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.quantile.html" ,
16531679"code" :"${o0} = ${i0}.quantile(${q}${axis}${numeric_only}${interpolation})" ,
16541680"options" :[
16551681{
@@ -1735,6 +1761,7 @@ define([
17351761"name" :"Drop Row/Column" ,
17361762"library" :"pandas" ,
17371763"description" :"Drop row and column" ,
1764+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop.html" ,
17381765"code" :"${o0} = ${i0}.drop(${i1}${axis})" ,
17391766"options" :[
17401767{
@@ -1791,6 +1818,7 @@ define([
17911818"name" :"date_range" ,
17921819"library" :"pandas" ,
17931820"description" :"Create DatetimeIndex type timestamp" ,
1821+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.date_range.html" ,
17941822"code" :"${o0} = pd.date_range(${start}${end}${periods}${freq})" ,
17951823"options" :[
17961824{
@@ -1862,6 +1890,7 @@ define([
18621890"name" :"Sort By Values" ,
18631891"library" :"pandas" ,
18641892"description" :"" ,
1893+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_values.html" ,
18651894"code" :"${o0} = ${i0}.sort_values(${by}${axis}${ascending}${inplace}${kind})" ,
18661895"options" :[
18671896{
@@ -1946,6 +1975,7 @@ define([
19461975"name" :"Is Null" ,
19471976"library" :"pandas" ,
19481977"description" :"Find null" ,
1978+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.isnull.html" ,
19491979"code" :"${o0} = pd.isnull(${i0})" ,
19501980"options" :[
19511981{
@@ -1974,6 +2004,7 @@ define([
19742004"name" :"Not Null" ,
19752005"library" :"pandas" ,
19762006"description" :"Find not null" ,
2007+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.notnull.html" ,
19772008"code" :"${o0} = pd.notnull(${i0})" ,
19782009"options" :[
19792010{
@@ -2002,6 +2033,7 @@ define([
20022033"name" :"Transpose" ,
20032034"library" :"pandas" ,
20042035"description" :"Transpose row and column" ,
2036+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.T.html" ,
20052037"code" :"${o0} = ${i0}.T" ,
20062038"options" :[
20072039{
@@ -2031,6 +2063,7 @@ define([
20312063"name" :"Get columns" ,
20322064"library" :"pandas" ,
20332065"description" :"" ,
2066+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.columns.html" ,
20342067"code" :"${o0} = ${i0}.columns" ,
20352068"options" :[
20362069{
@@ -2375,6 +2408,7 @@ define([
23752408"name" :"Unique" ,
23762409"library" :"pandas" ,
23772410"description" :"" ,
2411+ "docs" :"https://pandas.pydata.org/docs/reference/api/pandas.Series.unique.html" ,
23782412"code" :"${o0} = ${i0}.unique()" ,
23792413"options" :[
23802414{