|
| 1 | +##1. Dynamic Programming (Top-Down) |
| 2 | + |
| 3 | +::tabs-start |
| 4 | + |
| 5 | +```python |
| 6 | +classSolution: |
| 7 | +deflongestObstacleCourseAtEachPosition(self,obstacles: List[int]) -> List[int]: |
| 8 | + n=len(obstacles) |
| 9 | + dp= [[-1]* (n+1)for _inrange(n)] |
| 10 | + |
| 11 | +defdfs(i,prev): |
| 12 | +if i<0: |
| 13 | +return0 |
| 14 | +if dp[i][prev]!=-1: |
| 15 | +return dp[i][prev] |
| 16 | + |
| 17 | + res= dfs(i-1, prev) |
| 18 | +if prev== nor obstacles[prev]>= obstacles[i]: |
| 19 | + res=max(res,1+ dfs(i-1, i)) |
| 20 | + dp[i][prev]= res |
| 21 | +return res |
| 22 | + |
| 23 | + dfs(n-1, n) |
| 24 | +return [1]+ [1+ dp[i-1][i]for iinrange(1, n)] |
| 25 | +``` |
| 26 | + |
| 27 | +```java |
| 28 | +publicclassSolution { |
| 29 | +privateint[][] dp; |
| 30 | + |
| 31 | +publicint[]longestObstacleCourseAtEachPosition(int[]obstacles) { |
| 32 | +int n= obstacles.length; |
| 33 | +this.dp=newint[n][n+1]; |
| 34 | +for (int[] row: dp) { |
| 35 | +Arrays.fill(row,-1); |
| 36 | + } |
| 37 | + |
| 38 | + dfs(n-1, n, obstacles); |
| 39 | + |
| 40 | +int[] res=newint[n]; |
| 41 | + res[0]=1; |
| 42 | +for (int i=1; i< n; i++) { |
| 43 | + res[i]=1+ dp[i-1][i]; |
| 44 | + } |
| 45 | +return res; |
| 46 | + } |
| 47 | + |
| 48 | +privateintdfs(inti,intprev,int[]obstacles) { |
| 49 | +if (i<0) { |
| 50 | +return0; |
| 51 | + } |
| 52 | +if (dp[i][prev]!=-1) { |
| 53 | +return dp[i][prev]; |
| 54 | + } |
| 55 | + |
| 56 | +int res= dfs(i-1, prev, obstacles); |
| 57 | +if (prev== obstacles.length|| obstacles[prev]>= obstacles[i]) { |
| 58 | + res=Math.max(res,1+ dfs(i-1, i, obstacles)); |
| 59 | + } |
| 60 | +return dp[i][prev]= res; |
| 61 | + } |
| 62 | +} |
| 63 | +``` |
| 64 | + |
| 65 | +```cpp |
| 66 | +classSolution { |
| 67 | +public: |
| 68 | + vector<vector<int>> dp; |
| 69 | + |
| 70 | +vector<int> longestObstacleCourseAtEachPosition(vector<int>& obstacles) { |
| 71 | + int n = obstacles.size(); |
| 72 | + this->dp = vector<vector<int>>(n, vector<int>(n + 1, -1)); |
| 73 | + |
| 74 | + dfs(n - 1, n, obstacles); |
| 75 | + |
| 76 | + vector<int> res(n, 1); |
| 77 | + for (int i = 1; i < n; i++) { |
| 78 | + res[i] = 1 + dp[i - 1][i]; |
| 79 | + } |
| 80 | +return res; |
| 81 | + } |
| 82 | + |
| 83 | +private: |
| 84 | +intdfs(int i, int prev, vector<int>& obstacles) { |
| 85 | + if (i < 0) { |
| 86 | + return 0; |
| 87 | + } |
| 88 | + if (dp[i][prev] != -1) { |
| 89 | + return dp[i][prev]; |
| 90 | + } |
| 91 | + |
| 92 | + int res = dfs(i - 1, prev, obstacles); |
| 93 | + if (prev == obstacles.size() || obstacles[prev] >= obstacles[i]) { |
| 94 | + res = max(res, 1 + dfs(i - 1, i, obstacles)); |
| 95 | + } |
| 96 | + return dp[i][prev] = res; |
| 97 | +} |
| 98 | +}; |
| 99 | +``` |
| 100 | +
|
| 101 | +```javascript |
| 102 | +class Solution { |
| 103 | + /** |
| 104 | + * @param {number[]} obstacles |
| 105 | + * @return {number[]} |
| 106 | + */ |
| 107 | + longestObstacleCourseAtEachPosition(obstacles) { |
| 108 | + const n = obstacles.length; |
| 109 | + const dp = Array.from({ length: n }, () => new Array(n + 1).fill(-1)); |
| 110 | +
|
| 111 | + const dfs = (i, prev) => { |
| 112 | + if (i < 0) { |
| 113 | + return 0; |
| 114 | + } |
| 115 | + if (dp[i][prev] !== -1) { |
| 116 | + return dp[i][prev]; |
| 117 | + } |
| 118 | +
|
| 119 | + let res = dfs(i - 1, prev); |
| 120 | + if (prev === n || obstacles[prev] >= obstacles[i]) { |
| 121 | + res = Math.max(res, 1 + dfs(i - 1, i)); |
| 122 | + } |
| 123 | + dp[i][prev] = res; |
| 124 | + return res; |
| 125 | + }; |
| 126 | +
|
| 127 | + dfs(n - 1, n); |
| 128 | +
|
| 129 | + const res = new Array(n).fill(1); |
| 130 | + for (let i = 1; i < n; i++) { |
| 131 | + res[i] = 1 + dp[i - 1][i]; |
| 132 | + } |
| 133 | + return res; |
| 134 | + } |
| 135 | +} |
| 136 | +``` |
| 137 | + |
| 138 | +::tabs-end |
| 139 | + |
| 140 | +###Time & Space Complexity |
| 141 | + |
| 142 | +* Time complexity: $O(n ^ 2)$ |
| 143 | +* Space complexity: $O(n ^ 2)$ |
| 144 | + |
| 145 | +--- |
| 146 | + |
| 147 | +##2. Dynamic Programming (Binary Search) - I |
| 148 | + |
| 149 | +::tabs-start |
| 150 | + |
| 151 | +```python |
| 152 | +classSolution: |
| 153 | +deflongestObstacleCourseAtEachPosition(self,obstacles: List[int]) -> List[int]: |
| 154 | + res= [] |
| 155 | + dp= [10**8]* (len(obstacles)+1) |
| 156 | + |
| 157 | +for numin obstacles: |
| 158 | + index= bisect.bisect(dp, num) |
| 159 | + res.append(index+1) |
| 160 | + dp[index]= num |
| 161 | + |
| 162 | +return res |
| 163 | +``` |
| 164 | + |
| 165 | +```java |
| 166 | +publicclassSolution { |
| 167 | +publicint[]longestObstacleCourseAtEachPosition(int[]obstacles) { |
| 168 | +int n= obstacles.length; |
| 169 | +int[] res=newint[n]; |
| 170 | +int[] dp=newint[n+1]; |
| 171 | +Arrays.fill(dp, (int)1e8); |
| 172 | + |
| 173 | +for (int i=0; i< n; i++) { |
| 174 | +int index= upperBound(dp, obstacles[i]); |
| 175 | + res[i]= index+1; |
| 176 | + dp[index]= obstacles[i]; |
| 177 | + } |
| 178 | + |
| 179 | +return res; |
| 180 | + } |
| 181 | + |
| 182 | +privateintupperBound(int[]dp,inttarget) { |
| 183 | +int left=0, right= dp.length; |
| 184 | +while (left< right) { |
| 185 | +int mid= left+ (right- left)/2; |
| 186 | +if (dp[mid]> target) { |
| 187 | + right= mid; |
| 188 | + }else { |
| 189 | + left= mid+1; |
| 190 | + } |
| 191 | + } |
| 192 | +return left; |
| 193 | + } |
| 194 | +} |
| 195 | +``` |
| 196 | + |
| 197 | +```cpp |
| 198 | +classSolution { |
| 199 | +public: |
| 200 | + vector<int> longestObstacleCourseAtEachPosition(vector<int>& obstacles) { |
| 201 | + int n = obstacles.size(); |
| 202 | + vector<int> res(n); |
| 203 | + vector<int> dp(n + 1, 1e8); |
| 204 | + |
| 205 | + for (int i = 0; i < n; i++) { |
| 206 | + int index = upper_bound(dp.begin(), dp.end(), obstacles[i]) - dp.begin(); |
| 207 | + res[i] = index + 1; |
| 208 | + dp[index] = obstacles[i]; |
| 209 | + } |
| 210 | + |
| 211 | +return res; |
| 212 | + } |
| 213 | +}; |
| 214 | +``` |
| 215 | + |
| 216 | +```javascript |
| 217 | +classSolution { |
| 218 | +/** |
| 219 | + *@param{number[]}obstacles |
| 220 | + *@return{number[]} |
| 221 | +*/ |
| 222 | +longestObstacleCourseAtEachPosition(obstacles) { |
| 223 | +let n=obstacles.length; |
| 224 | +let res=newArray(n).fill(0); |
| 225 | +let dp=newArray(n+1).fill(1e8); |
| 226 | + |
| 227 | +constupperBound= (dp,target)=> { |
| 228 | +let left=0, right=dp.length; |
| 229 | +while (left< right) { |
| 230 | +let mid=Math.floor((left+ right)/2); |
| 231 | +if (dp[mid]> target) { |
| 232 | + right= mid; |
| 233 | + }else { |
| 234 | + left= mid+1; |
| 235 | + } |
| 236 | + } |
| 237 | +return left; |
| 238 | + }; |
| 239 | + |
| 240 | +for (let i=0; i< n; i++) { |
| 241 | +let index=upperBound(dp, obstacles[i]); |
| 242 | + res[i]= index+1; |
| 243 | + dp[index]= obstacles[i]; |
| 244 | + } |
| 245 | + |
| 246 | +return res; |
| 247 | + } |
| 248 | +} |
| 249 | +``` |
| 250 | + |
| 251 | +::tabs-end |
| 252 | + |
| 253 | +###Time & Space Complexity |
| 254 | + |
| 255 | +* Time complexity: $O(n \log n)$ |
| 256 | +* Space complexity: $O(n)$ |
| 257 | + |
| 258 | +--- |
| 259 | + |
| 260 | +##3. Dynamic Programming (Binary Search) - II |
| 261 | + |
| 262 | +::tabs-start |
| 263 | + |
| 264 | +```python |
| 265 | +classSolution: |
| 266 | +deflongestObstacleCourseAtEachPosition(self,obstacles: List[int]) -> List[int]: |
| 267 | + res= [] |
| 268 | + dp= [] |
| 269 | + |
| 270 | +for numin obstacles: |
| 271 | + index= bisect.bisect_right(dp, num) |
| 272 | + res.append(index+1) |
| 273 | + |
| 274 | +if index==len(dp): |
| 275 | + dp.append(num) |
| 276 | +else: |
| 277 | + dp[index]= num |
| 278 | + |
| 279 | +return res |
| 280 | +``` |
| 281 | + |
| 282 | +```java |
| 283 | +publicclassSolution { |
| 284 | +publicint[]longestObstacleCourseAtEachPosition(int[]obstacles) { |
| 285 | +int n= obstacles.length; |
| 286 | +int[] res=newint[n]; |
| 287 | +List<Integer> dp=newArrayList<>(); |
| 288 | + |
| 289 | +for (int i=0; i< n; i++) { |
| 290 | +int index= upperBound(dp, obstacles[i]); |
| 291 | + res[i]= index+1; |
| 292 | + |
| 293 | +if (index== dp.size()) { |
| 294 | + dp.add(obstacles[i]); |
| 295 | + }else { |
| 296 | + dp.set(index, obstacles[i]); |
| 297 | + } |
| 298 | + } |
| 299 | + |
| 300 | +return res; |
| 301 | + } |
| 302 | + |
| 303 | +privateintupperBound(List<Integer>dp,inttarget) { |
| 304 | +int left=0, right= dp.size(); |
| 305 | +while (left< right) { |
| 306 | +int mid= left+ (right- left)/2; |
| 307 | +if (dp.get(mid)> target) { |
| 308 | + right= mid; |
| 309 | + }else { |
| 310 | + left= mid+1; |
| 311 | + } |
| 312 | + } |
| 313 | +return left; |
| 314 | + } |
| 315 | +} |
| 316 | +``` |
| 317 | + |
| 318 | +```cpp |
| 319 | +classSolution { |
| 320 | +public: |
| 321 | + vector<int> longestObstacleCourseAtEachPosition(vector<int>& obstacles) { |
| 322 | + int n = obstacles.size(); |
| 323 | + vector<int> res(n); |
| 324 | + vector<int> dp; |
| 325 | + |
| 326 | + for (int i = 0; i < n; i++) { |
| 327 | + int index = upper_bound(dp.begin(), dp.end(), obstacles[i]) - dp.begin(); |
| 328 | + res[i] = index + 1; |
| 329 | + |
| 330 | + if (index == dp.size()) { |
| 331 | + dp.push_back(obstacles[i]); |
| 332 | + } else { |
| 333 | + dp[index] = obstacles[i]; |
| 334 | + } |
| 335 | + } |
| 336 | + |
| 337 | +return res; |
| 338 | + } |
| 339 | +}; |
| 340 | +``` |
| 341 | + |
| 342 | +```javascript |
| 343 | +classSolution { |
| 344 | +/** |
| 345 | + *@param{number[]}obstacles |
| 346 | + *@return{number[]} |
| 347 | +*/ |
| 348 | +longestObstacleCourseAtEachPosition(obstacles) { |
| 349 | +let n=obstacles.length; |
| 350 | +let res=newArray(n).fill(0); |
| 351 | +let dp= []; |
| 352 | + |
| 353 | +constupperBound= (dp,target)=> { |
| 354 | +let left=0, right=dp.length; |
| 355 | +while (left< right) { |
| 356 | +let mid=Math.floor((left+ right)/2); |
| 357 | +if (dp[mid]> target) { |
| 358 | + right= mid; |
| 359 | + }else { |
| 360 | + left= mid+1; |
| 361 | + } |
| 362 | + } |
| 363 | +return left; |
| 364 | + }; |
| 365 | + |
| 366 | +for (let i=0; i< n; i++) { |
| 367 | +let index=upperBound(dp, obstacles[i]); |
| 368 | + res[i]= index+1; |
| 369 | + |
| 370 | +if (index===dp.length) { |
| 371 | +dp.push(obstacles[i]); |
| 372 | + }else { |
| 373 | + dp[index]= obstacles[i]; |
| 374 | + } |
| 375 | + } |
| 376 | + |
| 377 | +return res; |
| 378 | + } |
| 379 | +} |
| 380 | +``` |
| 381 | + |
| 382 | +::tabs-end |
| 383 | + |
| 384 | +###Time & Space Complexity |
| 385 | + |
| 386 | +* Time complexity: $O(n \log n)$ |
| 387 | +* Space complexity: $O(n)$ |