Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Official implementation for "GLaPE: Gold Label-agnostic Prompt Evaluation and Optimization for Large Language Models" (stay tuned & more will be updated)

NotificationsYou must be signed in to change notification settings

thunderous77/GLaPE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Supercharge your prompt optimization without the hassle of elusive gold labels!

Introducing GLaPE (Gold Label-agnostic Prompt Evaluation) – a groundbreaking methodology leveraging self-consistency and mutual-consistency refinement.

Our GLaPE-based prompt optimization yields prompts comparable to accuracy-based ones on six popular datasets.

Check ourpaper for more information.

Requirements

Make sure you have Python>=3.8 installed on your machine.

pip install torch==1.8.2+cu111 torchtext==0.9.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.htmlpip install -r requirements.txt

Quick Start

Set your OpenAI API key first

GLaPE-based prompt optimization (Ours):

python main.py --dataset=gsm8k \--test_dataset_size=50

Accuracy-based prompt optimization (OPRO):

python main.py --dataset=gsm8k \--test_dataset_size=50 \--evaluation_metric=accuracy

Key arguments

--eval_dataset_size # The size of dataset to evaluate the prompt. To save budget, set it smaller.--test_dataset_size # The size of dataset to test the optimal prompt. Default 0, which means use the whole dataset.--cot_generate_times * --cot_generate_num # The total number of new prompts generated in the optimization trajectory.

Citation

@misc{zhang2024glape,      title={GLaPE: Gold Label-agnostic Prompt Evaluation and Optimization for Large Language Model},       author={Xuanchang Zhang and Zhuosheng Zhang and Hai Zhao},      year={2024},      eprint={2402.02408},      archivePrefix={arXiv},      primaryClass={cs.CL}}

About

Official implementation for "GLaPE: Gold Label-agnostic Prompt Evaluation and Optimization for Large Language Models" (stay tuned & more will be updated)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp