- Notifications
You must be signed in to change notification settings - Fork1
thunderous77/GLaPE
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Supercharge your prompt optimization without the hassle of elusive gold labels!
Introducing GLaPE (Gold Label-agnostic Prompt Evaluation) – a groundbreaking methodology leveraging self-consistency and mutual-consistency refinement.
Our GLaPE-based prompt optimization yields prompts comparable to accuracy-based ones on six popular datasets.
Check ourpaper for more information.
Make sure you have Python>=3.8 installed on your machine.
pip install torch==1.8.2+cu111 torchtext==0.9.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.htmlpip install -r requirements.txt
Set your OpenAI API key first
GLaPE-based prompt optimization (Ours):
python main.py --dataset=gsm8k \--test_dataset_size=50
Accuracy-based prompt optimization (OPRO):
python main.py --dataset=gsm8k \--test_dataset_size=50 \--evaluation_metric=accuracy
--eval_dataset_size # The size of dataset to evaluate the prompt. To save budget, set it smaller.--test_dataset_size # The size of dataset to test the optimal prompt. Default 0, which means use the whole dataset.--cot_generate_times * --cot_generate_num # The total number of new prompts generated in the optimization trajectory.
@misc{zhang2024glape, title={GLaPE: Gold Label-agnostic Prompt Evaluation and Optimization for Large Language Model}, author={Xuanchang Zhang and Zhuosheng Zhang and Hai Zhao}, year={2024}, eprint={2402.02408}, archivePrefix={arXiv}, primaryClass={cs.CL}}