- Notifications
You must be signed in to change notification settings - Fork23
deploying an ML model to Heroku with FastAPI
License
NotificationsYou must be signed in to change notification settings
testdrivenio/fastapi-ml
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Check out thetutorial.
Build and tag the Docker image:
$ docker build -t fastapi-prophet.
Spin up the container:
$ docker run --name fastapi-ml -e PORT=8008 -p 8008:8008 -d fastapi-prophet:latest
Train the model:
$ dockerexec -it fastapi-ml python>>> from model import train, predict, convert>>>train()
Test:
$ curl \ --header"Content-Type: application/json" \ --request POST \ --data'{"ticker":"MSFT"}' \ http://localhost:8008/predict
Create and activate a virtual environment:
$ python3 -m venv venv&&source venv/bin/activate
Install the requirements:
(venv)$ pip install -r requirements.txt
Train the model:
(venv)$ python>>> from model import train, predict, convert>>>train()
Run the app:
(venv)$ uvicorn main:app --reload --workers 1 --host 0.0.0.0 --port 8008
Test:
$ curl \ --header"Content-Type: application/json" \ --request POST \ --data'{"ticker":"MSFT"}' \ http://localhost:8008/predict
About
deploying an ML model to Heroku with FastAPI