Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Search for Binary Supernova Ejected OB-type Runaway Stars from Young Open Clusters | Master Thesis Project

NotificationsYou must be signed in to change notification settings

surodeep26/Runaway-Stars

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dias 2021 [https://vizier.cds.unistra.fr/viz-bin/VizieR-3?-source=J/MNRAS/504/356&-out.max=50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-sort=_r&-oc.form=sexa]

Sample Color-Magnitude Diagram

Sample Color-Magnitude Diagram

Demo

Part 0: Import necessary libraries

Import the functions necessary for the code:

%runrunaway_functionsv2%matplotlibqt

This also imports a list of young open clusters from (based on Dias+ 2021, Gaia DR2):

display(cluster_list)
Table length=399
ClusterRA_ICRSDE_ICRSr50Diameterr50_table2NpmRAe_pmRApmDEe_pmDEPlxe_PlxRVe_RVNRVDiste_Distlogagee_logage__Fe_H_e__Fe_H_Ave_AvFileNameSimbadName_RA.icrs_DE.icrs
degdegdegmas / yrmas / yrmas / yrmas / yrmasmaskm / skm / spcpclog(yr)log(yr)magmagdegdeg
str16float64float64float32float64float64int16float32float32float32float32float32float32float64float32int16int16int16float32float32float32float32float32float32str30str31float64float64
ASCC_107297.162322.00710.15620.880.17459-0.1440.135-5.1580.1411.1180.055------864307.4400.1210.3530.1031.3720.129clusters1/ASCC_107.dat[KPR2005] 107297.162322.0071
ASCC_114324.979053.99900.18025.920.216149-3.7540.210-3.4350.1451.0630.039------911127.6320.2710.0350.0781.2160.091clusters1/ASCC_114.dat[KPR2005] 114324.979053.9990
ASCC_127347.180764.91510.54175.240.6271137.4900.261-1.7810.3192.6180.080-11.2672.67616365107.4960.1310.1520.1150.6680.080clusters1/ASCC_127.dat[KPR2005] 127347.180664.9151
ASCC_1378.305744.42120.56473.080.609110-0.4770.111-1.7370.1080.8990.076------1066267.6150.098-0.0750.0780.9150.027clusters1/ASCC_13.dat[KPR2005] 1378.305744.4212
ASCC_1681.20251.62560.36745.120.3762071.3630.2800.0020.2742.8440.11321.3081.6961234837.0880.061-0.0620.0690.2240.045clusters1/ASCC_16.dat[KPR2005] 1681.20251.6256
ASCC_1982.0035-1.96170.61372.60.6051731.1120.263-1.3030.2412.7560.08823.5762.7191035627.1390.0300.0760.0770.1890.043clusters1/ASCC_19.dat[KPR2005] 1982.0035-1.9617
ASCC_2182.14233.47710.41949.20.411021.3810.292-0.6100.2372.8930.13215.3133.818834357.1020.038-0.0080.0290.2360.048clusters1/ASCC_21.dat[KPR2005] 2182.14233.4771
ASCC_32105.7112-26.57580.64678.720.656255-3.3170.2323.4750.1261.2400.06734.6074.62410792117.4320.022-0.0030.0480.2200.019clusters1/ASCC_32.dat[KPR2005] 32105.7112-26.5758
ASCC_67175.2892-60.99060.16521.960.18346-6.7750.0640.9250.0590.4820.026------1921897.4830.2270.2150.0950.8100.044clusters1/ASCC_67.dat[KPR2005] 67175.2893-60.9906
....................................................................................
UPK_540114.5354-58.43480.76698.640.82248-4.8150.2127.6610.2102.6630.09714.4563.188336547.5130.043-0.0080.0700.4480.071clusters1/UPK_540.datUPK 540114.5354-58.4348
UPK_604224.3164-59.80950.26042.360.35343-4.5480.144-3.7110.1991.3070.079------74597.1130.492-0.2090.3141.7730.417clusters1/UPK_604.datUPK 604224.3164-59.8095
UPK_606216.1298-46.36290.71693.840.78246-20.1470.688-16.5510.6865.8820.18410.4352.725716727.2310.142-0.0520.1750.1330.284clusters1/UPK_606.datUPK 606216.1299-46.3628
UPK_62289.726820.82630.11013.920.11633-0.4520.111-5.4180.1281.0750.056------885217.0390.2460.0210.2543.4210.257clusters1/UPK_62.datUPK 62289.726820.8263
UPK_621237.1990-54.38530.42556.520.47157-2.4710.150-3.1010.1001.1260.058------878327.5590.2290.1500.1340.9420.206clusters1/UPK_621.datUPK 621237.1990-54.3853
UPK_640250.4137-39.57401.231163.321.361540-12.0140.917-21.3500.7795.6660.2391.1742.0025017317.3790.0910.1490.1020.1890.101clusters1/UPK_640.datUPK 640250.4138-39.5739
vdBergh_130304.462439.34040.0495.88nan62-3.6090.308-5.0750.2920.5210.154------14562406.9740.091-0.0290.1632.3560.042clusters2/vdBergh_130.datCl VDB 130304.462439.3404
vdBergh_8097.7471-9.62150.15117.160.14360-3.2850.4300.4810.3611.0260.112------94726.7900.046-0.1480.0911.7260.219clusters1/vdBergh_80.datCl VDB 8097.7471-9.6215
vdBergh_85101.72881.33290.0454.80.0429-0.9730.1470.3450.1640.5500.049------17201677.1040.125-0.0550.1241.2060.270clusters1/vdBergh_85.datCl VDB 85101.72881.3329
vdBergh_92106.0426-11.48840.11413.440.112154-4.5390.2191.6070.2110.8340.09127.5806.68021114426.7490.0740.0250.0870.9840.062clusters1/vdBergh_92.datCl VDB 92106.0426-11.4884

Part 1: Obtain the cluster class object

using theget_cluster function from therunaway_functions.py, with thecluster_name as the input, we obtain the parameters of the cluster.

example usage:

cluster_name='ASCC_21'importosfromastropy.tableimportTable,Columnfromrunaway_functionsimportget_clustercluster=get_cluster(cluster_name)display(cluster)

This imports all the details for the cluster.Various parameters of the cluster can be accessed:

  • Name
  • Diameter (r50 Diameter: Diameter within which 50% of the cluster members lie)
  • Number of Cluster members etc.All parameters can be accessed together by:
cluster_name='ASCC_21'cluster=Cluster(cluster_name)cluster.all

Row index=0

ClusterRA_ICRSDE_ICRSr50Diameterr50_table2NpmRAe_pmRApmDEe_pmDEPlxe_PlxRVe_RVNRVDiste_Distlogagee_logage__Fe_H_e__Fe_H_Ave_AvFileNameSimbadName_RA.icrs_DE.icrs
degdegdegmas / yrmas / yrmas / yrmas / yrmasmaskm / skm / spcpclog(yr)log(yr)magmagdegdeg
str16float64float64float32float64float64int16float32float32float32float32float32float32float64float32int16int16int16float32float32float32float32float32float32str30str31float64float64
ASCC_2182.14233.47710.41949.20.411021.3810.292-0.6100.2372.8930.13215.3133.818834357.1020.038-0.0080.0290.2360.048clusters1/ASCC_21.dat[KPR2005] 2182.14233.4771

Part 2: Search stars in a region around the cluster

Using thecalculate_search_arcmin function from runaway_functions, calculate the region to be searched around the cluster. by default it is$10\ \mathrm{pc}$ around the clusters (from the edge of the cluster). This returns an astropy quantity object and prints its value.

cluster.calculate_search_arcmin()

$124.771 \mathrm{{}^{\prime}}$

We can also visualize this search region using:

cluster.plot_search_region()

Figure_1.png

Using this as the search radius for a conic search around the cluster center coordinates, we find a table of all the stars in the cone.

Getting runaways (all functions necessary included):

cluster=Cluster('Ruprecht_170')cluster.generate_tables()theoretical_data=theoretical_isochrone(cluster,output="table",printing=False)fs=cluster.read_table('fs')runaways=get_runaways(cluster,fs,theoretical_data)display(runaways)

About

Search for Binary Supernova Ejected OB-type Runaway Stars from Young Open Clusters | Master Thesis Project

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp