|
| 1 | +fromkeras.datasetsimportcifar10# importing the dataset from keras |
| 2 | +fromkeras.modelsimportSequential |
| 3 | +fromkeras.layersimportDense,Dropout,Activation,Flatten |
| 4 | +fromkeras.layersimportConv2D,MaxPooling2D |
| 5 | +fromkeras.callbacksimportModelCheckpoint,TensorBoard |
| 6 | +fromkeras.utilsimportto_categorical |
| 7 | +importos |
| 8 | + |
| 9 | +# hyper-parameters |
| 10 | +batch_size=64 |
| 11 | +# 10 categories of images (CIFAR-10) |
| 12 | +num_classes=10 |
| 13 | +# number of training epochs |
| 14 | +epochs=30 |
| 15 | + |
| 16 | +defcreate_model(input_shape): |
| 17 | +""" |
| 18 | + Constructs the model: |
| 19 | + - 32 Convolutional (3x3) |
| 20 | + - Relu |
| 21 | + - 32 Convolutional (3x3) |
| 22 | + - Relu |
| 23 | + - Max pooling (2x2) |
| 24 | + - Dropout |
| 25 | +
|
| 26 | + - 64 Convolutional (3x3) |
| 27 | + - Relu |
| 28 | + - 64 Convolutional (3x3) |
| 29 | + - Relu |
| 30 | + - Max pooling (2x2) |
| 31 | + - Dropout |
| 32 | +
|
| 33 | + - 128 Convolutional (3x3) |
| 34 | + - Relu |
| 35 | + - 128 Convolutional (3x3) |
| 36 | + - Relu |
| 37 | + - Max pooling (2x2) |
| 38 | + - Dropout |
| 39 | +
|
| 40 | + - Flatten (To make a 1D vector out of convolutional layers) |
| 41 | + - 1024 Fully connected units |
| 42 | + - Relu |
| 43 | + - Dropout |
| 44 | + - 10 Fully connected units (each corresponds to a label category (cat, dog, etc.)) |
| 45 | + """ |
| 46 | + |
| 47 | +# building the model |
| 48 | +model=Sequential() |
| 49 | + |
| 50 | +model.add(Conv2D(filters=32,kernel_size=(3,3),padding="same",input_shape=input_shape)) |
| 51 | +model.add(Activation("relu")) |
| 52 | +model.add(Conv2D(filters=32,kernel_size=(3,3),padding="same")) |
| 53 | +model.add(Activation("relu")) |
| 54 | +model.add(MaxPooling2D(pool_size=(2,2))) |
| 55 | +model.add(Dropout(0.25)) |
| 56 | + |
| 57 | +model.add(Conv2D(filters=64,kernel_size=(3,3),padding="same")) |
| 58 | +model.add(Activation("relu")) |
| 59 | +model.add(Conv2D(filters=64,kernel_size=(3,3),padding="same")) |
| 60 | +model.add(Activation("relu")) |
| 61 | +model.add(MaxPooling2D(pool_size=(2,2))) |
| 62 | +model.add(Dropout(0.25)) |
| 63 | + |
| 64 | +model.add(Conv2D(filters=128,kernel_size=(3,3),padding="same")) |
| 65 | +model.add(Activation("relu")) |
| 66 | +model.add(Conv2D(filters=128,kernel_size=(3,3),padding="same")) |
| 67 | +model.add(Activation("relu")) |
| 68 | +model.add(MaxPooling2D(pool_size=(2,2))) |
| 69 | +model.add(Dropout(0.25)) |
| 70 | + |
| 71 | +# flattening the convolutions |
| 72 | +model.add(Flatten()) |
| 73 | +# fully-connected layers |
| 74 | +model.add(Dense(1024)) |
| 75 | +model.add(Activation("relu")) |
| 76 | +model.add(Dropout(0.5)) |
| 77 | +model.add(Dense(num_classes,activation="softmax")) |
| 78 | + |
| 79 | +# print the summary of the model architecture |
| 80 | +model.summary() |
| 81 | + |
| 82 | +# training the model using rmsprop optimizer |
| 83 | +model.compile(loss="categorical_crossentropy",optimizer="adam",metrics=["accuracy"]) |
| 84 | +returnmodel |
| 85 | + |
| 86 | + |
| 87 | +defload_data(): |
| 88 | +""" |
| 89 | + This function loads CIFAR-10 dataset, normalized, and labels one-hot encoded |
| 90 | + """ |
| 91 | +# loading the CIFAR-10 dataset, splitted between train and test sets |
| 92 | + (X_train,y_train), (X_test,y_test)=cifar10.load_data() |
| 93 | +print("Training samples:",X_train.shape[0]) |
| 94 | +print("Testing samples:",X_test.shape[0]) |
| 95 | +print(f"Images shape:{X_train.shape[1:]}") |
| 96 | + |
| 97 | +# converting image labels to binary class matrices |
| 98 | +y_train=to_categorical(y_train,num_classes) |
| 99 | +y_test=to_categorical(y_test,num_classes) |
| 100 | + |
| 101 | +# convert to floats instead of int, so we can divide by 255 |
| 102 | +X_train=X_train.astype("float32") |
| 103 | +X_test=X_test.astype("float32") |
| 104 | +X_train/=255 |
| 105 | +X_test/=255 |
| 106 | + |
| 107 | +return (X_train,y_train), (X_test,y_test) |
| 108 | + |
| 109 | + |
| 110 | +if__name__=="__main__": |
| 111 | + |
| 112 | +# load the data |
| 113 | + (X_train,y_train), (X_test,y_test)=load_data() |
| 114 | + |
| 115 | +# constructs the model |
| 116 | +model=create_model(input_shape=X_train.shape[1:]) |
| 117 | + |
| 118 | +# some nice callbacks |
| 119 | +tensorboard=TensorBoard(log_dir="logs/cifar10-model-v1") |
| 120 | +checkpoint=ModelCheckpoint("results/cifar10-loss-{val_loss:.2f}-acc-{val_acc:.2f}.h5", |
| 121 | +save_best_only=True, |
| 122 | +verbose=1) |
| 123 | + |
| 124 | +# make sure results folder exist |
| 125 | +ifnotos.path.isdir("results"): |
| 126 | +os.mkdir("results") |
| 127 | + |
| 128 | +# train |
| 129 | +model.fit(X_train,y_train, |
| 130 | +batch_size=batch_size, |
| 131 | +epochs=epochs, |
| 132 | +validation_data=(X_test,y_test), |
| 133 | +callbacks=[tensorboard,checkpoint], |
| 134 | +shuffle=True) |