Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Chat with your database or your datalake (SQL, CSV, parquet). PandasAI makes data analysis conversational using LLMs and RAG.

License

NotificationsYou must be signed in to change notification settings

sinaptik-ai/pandas-ai

Repository files navigation

PandasAI

ReleaseCICDCoverageDiscordDownloadsLicense: MITOpen in Colab

PandasAI is a Python library that makes it easy to ask questions to your data in natural language. It helps non-technical users to interact with their data in a more natural way, and it helps technical users to save time, and effort when working with data.

🔧 Getting started

You can find the full documentation for PandasAIhere.

📚 Using the library

Python Requirements

Python version3.8+ <=3.11

📦 Installation

You can install the PandasAI library using pip or poetry.

With pip:

pip install pandasaipip install pandasai-litellm

With poetry:

poetry add pandasaipoetry add pandasai-litellm

💻 Usage

Ask questions

importpandasaiaspaifrompandasai_litellm.litellmimportLiteLLM# Initialize LiteLLM with your OpenAI modelllm=LiteLLM(model="gpt-4.1-mini",api_key="YOUR_OPENAI_API_KEY")# Configure PandasAI to use this LLMpai.config.set({"llm":llm})# Load your datadf=pai.read_csv("data/companies.csv")response=df.chat("What is the average revenue by region?")print(response)

Or you can ask more complex questions:

df.chat("What is the total sales for the top 3 countries by sales?")
The total sales for the top 3 countries by sales is 16500.

Visualize charts

You can also ask PandasAI to generate charts for you:

df.chat("Plot the histogram of countries showing for each one the gdp. Use different colors for each bar",)

Chart

Multiple DataFrames

You can also pass in multiple dataframes to PandasAI and ask questions relating them.

importpandasaiaspaifrompandasai_litellm.litellmimportLiteLLM# Initialize LiteLLM with your OpenAI modelllm=LiteLLM(model="gpt-4.1-mini",api_key="YOUR_OPENAI_API_KEY")# Configure PandasAI to use this LLMpai.config.set({"llm":llm})employees_data= {'EmployeeID': [1,2,3,4,5],'Name': ['John','Emma','Liam','Olivia','William'],'Department': ['HR','Sales','IT','Marketing','Finance']}salaries_data= {'EmployeeID': [1,2,3,4,5],'Salary': [5000,6000,4500,7000,5500]}employees_df=pai.DataFrame(employees_data)salaries_df=pai.DataFrame(salaries_data)pai.chat("Who gets paid the most?",employees_df,salaries_df)
Olivia gets paid the most.

Docker Sandbox

You can run PandasAI in a Docker sandbox, providing a secure, isolated environment to execute code safely and mitigate the risk of malicious attacks.

Python Requirements
pip install"pandasai-docker"
Usage
importpandasaiaspaifrompandasai_dockerimportDockerSandboxfrompandasai_litellm.litellmimportLiteLLM# Initialize LiteLLM with your OpenAI modelllm=LiteLLM(model="gpt-4.1-mini",api_key="YOUR_OPENAI_API_KEY")# Configure PandasAI to use this LLMpai.config.set({"llm":llm})# Initialize the sandboxsandbox=DockerSandbox()sandbox.start()employees_data= {'EmployeeID': [1,2,3,4,5],'Name': ['John','Emma','Liam','Olivia','William'],'Department': ['HR','Sales','IT','Marketing','Finance']}salaries_data= {'EmployeeID': [1,2,3,4,5],'Salary': [5000,6000,4500,7000,5500]}employees_df=pai.DataFrame(employees_data)salaries_df=pai.DataFrame(salaries_data)pai.chat("Who gets paid the most?",employees_df,salaries_df,sandbox=sandbox)# Don't forget to stop the sandbox when donesandbox.stop()
Olivia gets paid the most.

You can find more examples in theexamples directory.

📜 License

PandasAI is available under the MIT expat license, except for thepandasai/ee directory of this repository, which has itslicense here.

If you are interested in managed PandasAI Cloud or self-hosted Enterprise Offering,contact us.

Resources

  • Docs for comprehensive documentation
  • Examples for example notebooks
  • Discord for discussion with the community and PandasAI team

🤝 Contributing

Contributions are welcome! Please check the outstanding issues and feel free to open a pull request.For more information, please check out thecontributing guidelines.

Thank you!

Contributors

About

Chat with your database or your datalake (SQL, CSV, parquet). PandasAI makes data analysis conversational using LLMs and RAG.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Languages


[8]ページ先頭

©2009-2026 Movatter.jp