Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

cannot be cast to [Lcom.salesforce.op.stages.impl.feature.TextStats; #504

Open
@vanlinhnguyen

Description

@vanlinhnguyen

Describe the bug
I try to launch a minimal example (Titanic) from a Jupyter hub with Spark 2.4.4, and got the following exception for string features:

Name: java.lang.ClassCastExceptionMessage: [Lcom.salesforce.op.stages.impl.feature.TextStats; cannot be cast to [Lcom.salesforce.op.stages.impl.feature.TextStats;

The unit test in my local repo seems to work well, with the following dependencies:

// sbt-assembly excludes packages tagged "provided" as belowvalsparkVersion="2.4.4"valscalaTestVersion="3.0.8"libraryDependencies++=Seq("org.scalatest"%%"scalatest"% scalaTestVersion,"org.apache.spark"%%"spark-core"% sparkVersion%"provided","org.apache.spark"%%"spark-mllib"% sparkVersion%"provided","org.apache.spark"%%"spark-sql"% sparkVersion%"provided","com.salesforce.transmogrifai"%%"transmogrifai-core"%"0.7.0")

To Reproduce

objectSimpleLauncher {defrun (inputDf:DataFrame,targetCol:String):Unit= {implicitvalspark:SparkSession= getSparkSession(false,"Transmogifai Simple Launcher")        println("Yarn application id:"+ spark.sparkContext.getConf.getAppId)importspark.implicits._// Automated feature engineeringval (target, features)=FeatureBuilder.fromDataFrame[RealNN](inputDf, response= targetCol)valfeatureVector:FeatureLike[OPVector]= features.transmogrify()// Automated feature selectionvalcheckedFeatures:FeatureLike[OPVector]= target.sanityCheck(featureVector, checkSample=1.0, removeBadFeatures=true)// Define the model we want to use (here a simple logistic regression) and get the resulting outputvalprediction:FeatureLike[Prediction]=BinaryClassificationModelSelector.withTrainValidationSplit(            modelTypesToUse=Seq(OpLogisticRegression)        ).setInput(target, checkedFeatures).getOutput()valmodel:OpWorkflowModel=newOpWorkflow().setInputDataset(inputDf).setResultFeatures(prediction).train()        println("Model summary:\n"+ model.summaryPretty())    }}

This work on local:

  test("Titanic simple") {importspark.implicits._// Read Titanic data as a DataFramevalcsvFilePath:String="src/test/resources/data/PassengerDataAll.csv"valpassengersData:DataFrame=DataReaders.Simple.csvCase[Passenger](path=Option(csvFilePath), key= _.id.toString)      .readDataset().toDF()valtruncatedData= passengersData.select("name","age","survived")    truncatedData.show()    truncatedData.printSchema()SimpleLauncher.run(truncatedData,"survived")  }

While the same doesn't from jupyter hub:

valpassengers= spark.read.schema(schema)   .option("header","true")   .csv("path_to_csv)SimpleLauncher.run(passengers,"survived")

Expected behavior

Name: java.lang.ClassCastExceptionMessage: [Lcom.salesforce.op.stages.impl.feature.TextStats; cannot be cast to [Lcom.salesforce.op.stages.impl.feature.TextStats;StackTrace:   at com.salesforce.op.stages.impl.feature.SmartTextVectorizer.fitFn(SmartTextVectorizer.scala:91)  at com.salesforce.op.stages.base.sequence.SequenceEstimator.fit(SequenceEstimator.scala:99)  at com.salesforce.op.stages.base.sequence.SequenceEstimator.fit(SequenceEstimator.scala:57)  at com.salesforce.op.utils.stages.FitStagesUtil$$anonfun$20.apply(FitStagesUtil.scala:264)  at com.salesforce.op.utils.stages.FitStagesUtil$$anonfun$20.apply(FitStagesUtil.scala:263)  at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)  at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)  at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)  at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)  at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)  at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)  at com.salesforce.op.utils.stages.FitStagesUtil$.com$salesforce$op$utils$stages$FitStagesUtil$$fitAndTransformLayer(FitStagesUtil.scala:263)  at com.salesforce.op.utils.stages.FitStagesUtil$$anonfun$17.apply(FitStagesUtil.scala:226)  at com.salesforce.op.utils.stages.FitStagesUtil$$anonfun$17.apply(FitStagesUtil.scala:224)  at scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:57)  at scala.collection.IndexedSeqOptimized$class.foldLeft(IndexedSeqOptimized.scala:66)  at scala.collection.mutable.ArrayOps$ofRef.foldLeft(ArrayOps.scala:186)  at com.salesforce.op.utils.stages.FitStagesUtil$.fitAndTransformDAG(FitStagesUtil.scala:224)  at com.salesforce.op.OpWorkflow.fitStages(OpWorkflow.scala:407)  at com.salesforce.op.OpWorkflow.train(OpWorkflow.scala:354)  at launchers.SimpleLauncher$.run(SimpleLauncher.scala:35)

Logs or screenshots
If applicable, add logs or screenshots to help explain your problem.

Additional context
Add any other context about the problem here.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions


      [8]ページ先頭

      ©2009-2025 Movatter.jp