Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

A collection of tutorials on state-of-the-art computer vision models and techniques. Explore everything from foundational architectures like ResNet to cutting-edge models like YOLO11, RT-DETR, SAM 2, Florence-2, PaliGemma 2, and Qwen2.5VL.

NotificationsYou must be signed in to change notification settings

roboflow/notebooks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

👋 hello

This repository offers a growing collection of computer vision tutorials. Learn to use SOTA models like YOLOv11, SAM 2, Florence-2, PaliGemma 2, and Qwen2.5-VL for tasks ranging from object detection, segmentation, and pose estimation to data extraction and OCR. Dive in and explore the exciting world of computer vision!

🚀 model tutorials (55 notebooks)

notebookopen in colab / kaggle / sagemaker studio labcomplementary materialsrepository / paper
Segment Images with SAM3ColabKaggleRoboflowYouTubeGitHubarXiv
Segment Videos with SAM3ColabKaggleRoboflowYouTubeGitHubarXiv
Open Vocabulary Object Detection with Qwen3-VLColabKaggleGitHub
Fine-Tune RF-DETR Segmentation on Custom DatasetColabKaggleRoboflowGitHubarXiv
Zero-Shot Object Detection and Segmentation with Google Gemini 2.5ColabKaggleRoboflowarXiv
Fine-Tune RF-DETR on Object Detection DatasetColabKaggleRoboflowYouTubeGitHubarXiv
Zero-Shot Object Detection and Segmentation with YOLOEColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune YOLOv12 on Object Detection DatasetColabKaggleRoboflowGitHubarXiv
Zero-Shot Object Detection with Qwen2.5-VLColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune Qwen2.5-VL for JSON Data ExtractionColabKaggleYouTubeGitHubarXiv
Fine-Tune PaliGemma2 on Object Detection DatasetColabKaggleRoboflowGitHubarXiv
Fine-Tune PaliGemma2 for JSON Data ExtractionColabKaggleRoboflowGitHubarXiv
Fine-Tune PaliGemma2 for LaTeX OCRColabKaggleRoboflowGitHubarXiv
Fine-Tune SAM-2.1ColabKaggleRoboflowYouTubeGitHub
Fine-Tune GPT-4o on Object Detection DatasetColabKaggleRoboflowYouTube
Fine-Tune YOLO11 on Object Detection DatasetColabKaggleRoboflowYouTubeGitHub
Fine-Tune YOLO11 on Instance Segmentation DatasetColabKaggleRoboflowYouTubeGitHub
Segment Images with SAM2ColabKaggleRoboflowYouTubeGitHubarXiv
Segment Videos with SAM2ColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune RT-DETR on Object Detection DatasetColabKaggleRoboflowGitHubarXiv
Fine-Tune Florence-2 on Object Detection DatasetColabKaggleRoboflowYouTubearXiv
Run Different Vision Tasks with Florence-2ColabKaggleRoboflowYouTubearXiv
Fine-Tune PaliGemma on Object Detection DatasetColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune YOLOv10 on Object Detection DatasetColabKaggleRoboflowGitHubarXiv
Zero-Shot Object Detection with YOLO-WorldColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune YOLOv9 on Object Detection DatasetColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune RTMDet on Object Detection DatasetColabKaggleRoboflowYouTubeGitHubarXiv
Segment Images with FastSAMColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune YOLO-NAS on Object Detection DatasetColabKaggleRoboflowYouTubeGitHub
Segment Images with Segment Anything Model (SAM)ColabKaggleRoboflowYouTubeGitHubarXiv
Zero-Shot Object Detection with Grounding DINOColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune DETR Transformer on Object Detection DatasetColabKaggleRoboflowYouTubeGitHubarXiv
Classify Images with DINOv2ColabKaggleRoboflowGitHubarXiv
Fine-Tune YOLOv8 on Object Detection DatasetColabKaggleRoboflowYouTubeGitHub
Fine-Tune YOLOv8 on Pose Estimation DatasetColabKaggleRoboflowGitHub
Fine-Tune YOLOv8 on Oriented Bounding Boxes (OBB) DatasetColabKaggleRoboflowGitHub
Fine-Tune YOLOv8 on Instance Segmentation DatasetColabKaggleRoboflowYouTubeGitHub
Fine-Tune YOLOv8 on Classification DatasetColabKaggleRoboflowGitHub
Fine-Tune YOLOv7 on Object Detection DatasetColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune YOLOv7 on Instance Segmentation DatasetColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune MT-YOLOv6 on Object Detection DatasetColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune YOLOv5 on Object Detection DatasetColabKaggleRoboflowYouTubeGitHub
Fine-Tune YOLOv5 on Classification DatasetColabKaggleRoboflowYouTubeGitHub
Fine-Tune YOLOv5 on Instance Segmentation DatasetColabKaggleRoboflowYouTubeGitHub
Fine-Tune Faster RCNN on Instance Segmentation DatasetColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune SegFormer on Instance Segmentation DatasetColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune ViT on Classification DatasetColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune Scaled-YOLOv4 on Object Detection DatasetColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune YOLOS on Object Detection DatasetColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune YOLOR on Object Detection DatasetColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune YOLOX on Object Detection DatasetColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune ResNet34 on Classification DatasetColabKaggleRoboflowYouTube
Image Classification with OpenAI ClipColabKaggleRoboflowYouTubeGitHubarXiv
Fine-Tune YOLOv4-tiny Darknet on Object Detection DatasetColabKaggleRoboflowYouTubeGitHubarXiv
Train a YOLOv8 Classification Model with No LabelingColabKaggleRoboflowGitHub

📍 tracker tutorials (2 notebooks)

notebookopen in colab / kaggle / sagemaker studio labcomplementary materialsrepository / paper
How to Track Objects with SORT TrackerColabKaggleGitHubarXiv
How to Track Objects with DeepSORT TrackerColabKaggleGitHubarXiv

🛠️ computer vision skills (23 notebooks)

notebookopen in colab / kaggle / sagemaker studio labcomplementary materialsrepository / paper
Basketball AI: Detect NBA 3 Second ViolationColabKaggleRoboflow
Basketball AI: How to Detect Track and Identify Basketball PlayersColabKaggleRoboflowYouTube
Football AIColabKaggleRoboflowYouTubeGitHub
Auto-Annotate Dataset with GroundedSAM 2ColabKaggleRoboflowGitHub
Run YOLOv7 Object Detection with OpenVINO + TorchORTColabKaggleRoboflowGitHubarXiv
Estimate Vehicle Speed with YOLOv8ColabKaggleRoboflowYouTubeGitHub
Detect and Count Objects in Polygon Zone with YOLOv5 / YOLOv8 / Detectron2 + SupervisionColabKaggleRoboflowYouTubeGitHub
Track and Count Vehicles with YOLOv8 + ByteTRACK + SupervisionColabKaggleRoboflowYouTubeGitHubarXiv
Football Players Tracking with YOLOv5 + ByteTRACKColabKaggleRoboflowYouTubeGitHubarXiv
Auto Train YOLOv8 Model with AutodistillColabKaggleRoboflowYouTubeGitHub
Image Embeddings Analysis - Part 1ColabKaggleYouTubeGitHubarXiv
Automated Dataset Annotation and Evaluation with Grounding DINO and SAMColabKaggleRoboflowYouTubeGitHubarXiv
Automated Dataset Annotation and Evaluation with Grounding DINOColabKaggleYouTubeGitHubarXiv
Roboflow Video Inference with Custom AnnotatorsColabKaggleRoboflowGitHub
DINO-GPT-4V Object DetectionColabKaggleRoboflow
Train a Segmentation Model with No LabelingColabKaggleRoboflowGitHub
DINOv2 Image RetrievalColabKaggleGitHubarXiv
Vector Analysis with Scikit-learn and BokehColabKaggleRoboflow
RF100 Object Detection Model BenchmarkingColabKaggleRoboflowYouTubeGitHubarXiv
Create Segmentation Masks with RoboflowColabKaggleRoboflow
How to Use PolygonZone and Roboflow SupervisionColabKaggleRoboflow
Train a Package Detector With Two Labeled ImagesColabKaggleRoboflowGitHub
Image-to-Image Search with CLIP and faissColabKaggleRoboflow

🎬 videos

Almost every week we create tutorials showing you the hottest models in Computer Vision. 🔥Subscribe, and stay up to date with our latest YouTube videos!

How to Choose the Best Computer Vision Model for Your ProjectHow to Choose the Best Computer Vision Model for Your Project

Created: 26 May 2023 |Updated: 26 May 2023

In this video, we will dive into the complexity of choosing the right computer vision model for your unique project. From the importance of high-quality datasets to hardware considerations, interoperability, benchmarking, and licensing issues, this video covers it all...


Accelerate Image Annotation with SAM and Grounding DINOAccelerate Image Annotation with SAM and Grounding DINO

Created: 20 Apr 2023 |Updated: 20 Apr 2023

Discover how to speed up your image annotation process using Grounding DINO and Segment Anything Model (SAM). Learn how to convert object detection datasets into instance segmentation datasets, and see the potential of using these models to automatically annotate your datasets for real-time detectors like YOLOv8...


SAM - Segment Anything Model by Meta AI: Complete GuideSAM - Segment Anything Model by Meta AI: Complete Guide

Created: 11 Apr 2023 |Updated: 11 Apr 2023


Discover the incredible potential of Meta AI's Segment Anything Model (SAM)! We dive into SAM, an efficient and promptable model for image segmentation, which has revolutionized computer vision tasks. With over 1 billion masks on 11M licensed and privacy-respecting images, SAM's zero-shot performance is often superior to prior fully supervised results...

💻 run locally

We try to make it as easy as possible to run Roboflow Notebooks in Colab and Kaggle, but if you still want to run themlocally, below you will find instructions on how to do it. Remember don't install your dependencies globally, usevenv.

#clone repository and navigate to root directorygit clone git@github.com:roboflow-ai/notebooks.gitcd notebooks#setup python environment and activate itpython3 -m venv venvsource venv/bin/activate#install and run jupyter notebookpip install notebookjupyter notebook

☁️ run in sagemaker studio lab

You can now open our tutorial notebooks inAmazon SageMaker Studio Lab -a free machine learning development environment that provides the compute, storage, and security—all at no cost—foranyone to learn and experiment with ML.

Stable Diffusion Image GenerationYOLOv5 Custom Dataset TrainingYOLOv7 Custom Dataset Training
SageMakerSageMakerSageMaker

🐞 bugs & 🦸 contribution

Computer Vision moves fast! Sometimes our notebooks lag a tad behind the ever-pushingforward libraries. If you notice that any of the notebooks is not working properly, create abug reportand let us know.

If you have an idea for a new tutorial we should do, create afeature request.We are constantly looking for new ideas. If you feel up to the task and want to create a tutorial yourself, please takea peek at ourcontribution guide. There you canfind all the information you need.

We are here for you, so don't hesitate toreach out.

About

A collection of tutorials on state-of-the-art computer vision models and techniques. Explore everything from foundational architectures like ResNet to cutting-edge models like YOLO11, RT-DETR, SAM 2, Florence-2, PaliGemma 2, and Qwen2.5VL.

Topics

Resources

Contributing

Stars

Watchers

Forks


[8]ページ先頭

©2009-2025 Movatter.jp