@@ -8,7 +8,7 @@ msgstr ""
88"Project-Id-Version :Python 3.7\n "
99"Report-Msgid-Bugs-To :\n "
1010"POT-Creation-Date :2018-06-26 18:54+0800\n "
11- "PO-Revision-Date :2016-11-19 00:37+0000 \n "
11+ "PO-Revision-Date :2018-10-13 20:21+0800 \n "
1212"Last-Translator :Liang-Bo Wang <me@liang2.tw>\n "
1313"Language-Team :Chinese - TAIWAN (https://github.com/python/python-docs-zh- "
1414"tw)\n "
@@ -17,28 +17,31 @@ msgstr ""
1717"Content-Type :text/plain; charset=UTF-8\n "
1818"Content-Transfer-Encoding :8bit\n "
1919"Plural-Forms :nplurals=1; plural=0;\n "
20+ "X-Generator :Poedit 2.2\n "
2021
2122#: ../../tutorial/floatingpoint.rst:9
2223msgid "Floating Point Arithmetic: Issues and Limitations"
23- msgstr ""
24+ msgstr "浮點數運算:問題與限制 "
2425
2526#: ../../tutorial/floatingpoint.rst:14
2627msgid ""
2728"Floating-point numbers are represented in computer hardware as base 2 "
2829"(binary) fractions. For example, the decimal fraction ::"
29- msgstr ""
30+ msgstr "在計算機架構中,浮點數透過二進位小數表示。 例如說,在十進位小數中 :: "
3031
3132#: ../../tutorial/floatingpoint.rst:19
3233msgid ""
3334"has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction ::"
34- msgstr ""
35+ msgstr "可被分為 1/10 + 2/100 + 5/1000 ,同樣的道理,二進位小數 :: "
3536
3637#: ../../tutorial/floatingpoint.rst:23
3738msgid ""
3839"has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the "
3940"only real difference being that the first is written in base 10 fractional "
4041"notation, and the second in base 2."
4142msgstr ""
43+ "可被分為 0/2 + 0/4 + 1/8 。這兩個小數有相同的數值,而唯一真正的不同在於前者以"
44+ "十進位表示,後者以二進位表示。"
4245
4346#: ../../tutorial/floatingpoint.rst:27
4447msgid ""
@@ -47,30 +50,38 @@ msgid ""
4750"point numbers you enter are only approximated by the binary floating-point "
4851"numbers actually stored in the machine."
4952msgstr ""
53+ "不幸的是,大多數十進位小數無法精準地以二進位小數表示。一般的結果為,您輸入的"
54+ "十進位浮點數由實際存在計算機中的二進位浮點數近似。"
5055
5156#: ../../tutorial/floatingpoint.rst:32
5257msgid ""
5358"The problem is easier to understand at first in base 10. Consider the "
5459"fraction 1/3. You can approximate that as a base 10 fraction::"
5560msgstr ""
61+ "在十進位中,這個問題更容易首先被理解。考慮分數 1/3 ,您可以將其近似為十進位小"
62+ "數 ::"
5663
5764#: ../../tutorial/floatingpoint.rst:37 ../../tutorial/floatingpoint.rst:41
5865msgid "or, better, ::"
59- msgstr ""
66+ msgstr "或者,更好的近似:: "
6067
6168#: ../../tutorial/floatingpoint.rst:45
6269msgid ""
6370"and so on. No matter how many digits you're willing to write down, the "
6471"result will never be exactly 1/3, but will be an increasingly better "
6572"approximation of 1/3."
6673msgstr ""
74+ "依此類推,不論你願意以多少位數表示小數,最後的結果都無法精準地表示 1/3 ,但你"
75+ "還是能越來越精準的表示 1/3 。"
6776
6877#: ../../tutorial/floatingpoint.rst:49
6978msgid ""
7079"In the same way, no matter how many base 2 digits you're willing to use, the "
7180"decimal value 0.1 cannot be represented exactly as a base 2 fraction. In "
7281"base 2, 1/10 is the infinitely repeating fraction ::"
7382msgstr ""
83+ "同樣的道理,不論你願意以多少位數表示二進位小數,十進位小數 0.1 都無法被二進位"
84+ "小數精準的表達。在二進位小數中, 1/10 會是一個無限循環小數 ::"
7485
7586#: ../../tutorial/floatingpoint.rst:55
7687msgid ""