@@ -8,7 +8,7 @@ msgstr ""
88"Project-Id-Version :Python 3.7\n "
99"Report-Msgid-Bugs-To :\n "
1010"POT-Creation-Date :2018-06-26 18:54+0800\n "
11- "PO-Revision-Date :2018-10-13 20:21 +0800\n "
11+ "PO-Revision-Date :2018-10-16 15:41 +0800\n "
1212"Last-Translator :Liang-Bo Wang <me@liang2.tw>\n "
1313"Language-Team :Chinese - TAIWAN (https://github.com/python/python-docs-zh- "
1414"tw)\n "
@@ -27,20 +27,26 @@ msgstr "浮點數運算:問題與限制"
2727msgid ""
2828"Floating-point numbers are represented in computer hardware as base 2 "
2929"(binary) fractions. For example, the decimal fraction ::"
30- msgstr "在計算機架構中,浮點數透過二進位小數表示。 例如說,在十進位小數中 ::"
30+ msgstr ""
31+ "在計算機架構中,浮點數透過二進位小數表示。例如說,在十進位小數中:\n"
32+ "\n"
33+ " ::"
3134
3235#: ../../tutorial/floatingpoint.rst:19
3336msgid ""
3437"has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction ::"
35- msgstr "可被分為 1/10 + 2/100 + 5/1000 ,同樣的道理,二進位小數 ::"
38+ msgstr ""
39+ "可被分為 1/10 + 2/100 + 5/1000,同樣的道理,二進位小數 :\n"
40+ "\n"
41+ "::"
3642
3743#: ../../tutorial/floatingpoint.rst:23
3844msgid ""
3945"has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the "
4046"only real difference being that the first is written in base 10 fractional "
4147"notation, and the second in base 2."
4248msgstr ""
43- "可被分為 0/2 + 0/4 + 1/8 。這兩個小數有相同的數值,而唯一真正的不同在於前者以"
49+ "可被分為 0/2 + 0/4 + 1/8。這兩個小數有相同的數值,而唯一真正的不同在於前者以"
4450"十進位表示,後者以二進位表示。"
4551
4652#: ../../tutorial/floatingpoint.rst:27
@@ -50,29 +56,34 @@ msgid ""
5056"point numbers you enter are only approximated by the binary floating-point "
5157"numbers actually stored in the machine."
5258msgstr ""
53- "不幸的是,大多數十進位小數無法精準地以二進位小數表示 。一般的結果為,您輸入的"
59+ "不幸的是,大多數十進位小數無法精準的以二進位小數表示 。一般的結果為,您輸入的"
5460"十進位浮點數由實際存在計算機中的二進位浮點數近似。"
5561
5662#: ../../tutorial/floatingpoint.rst:32
5763msgid ""
5864"The problem is easier to understand at first in base 10. Consider the "
5965"fraction 1/3. You can approximate that as a base 10 fraction::"
6066msgstr ""
61- "在十進位中,這個問題更容易首先被理解。考慮分數 1/3 ,您可以將其近似為十進位小"
62- "數 ::"
67+ "在十進位中,這個問題更容易被理解。以分數 1/3 為例,您可以將其近似為十進位小"
68+ "數:\n"
69+ "\n"
70+ " ::"
6371
6472#: ../../tutorial/floatingpoint.rst:37 ../../tutorial/floatingpoint.rst:41
6573msgid "or, better, ::"
66- msgstr "或者,更好的近似::"
74+ msgstr ""
75+ "或者,更好的近似:\n"
76+ "\n"
77+ "::"
6778
6879#: ../../tutorial/floatingpoint.rst:45
6980msgid ""
7081"and so on. No matter how many digits you're willing to write down, the "
7182"result will never be exactly 1/3, but will be an increasingly better "
7283"approximation of 1/3."
7384msgstr ""
74- "依此類推,不論你願意以多少位數表示小數,最後的結果都無法精準地表示 1/3 ,但你 "
75- "還是能越來越精準的表示 1/3 。"
85+ "依此類推,不論你使用多少位數表示小數,最後的結果都無法精準的表示 1/3,但你還 "
86+ "是能越來越精準的表示 1/3。"
7687
7788#: ../../tutorial/floatingpoint.rst:49
7889msgid ""
@@ -81,7 +92,9 @@ msgid ""
8192"base 2, 1/10 is the infinitely repeating fraction ::"
8293msgstr ""
8394"同樣的道理,不論你願意以多少位數表示二進位小數,十進位小數 0.1 都無法被二進位"
84- "小數精準的表達。在二進位小數中, 1/10 會是一個無限循環小數 ::"
95+ "小數精準的表達。在二進位小數中, 1/10 會是一個無限循環小數:\n"
96+ "\n"
97+ "::"
8598
8699#: ../../tutorial/floatingpoint.rst:55
87100msgid ""