Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit84a0fc5

Browse files
authored
feat(library/statistics): translate newly-added strings (#627)
1 parente119d02 commit84a0fc5

File tree

1 file changed

+16
-10
lines changed

1 file changed

+16
-10
lines changed

‎library/statistics.po

Lines changed: 16 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1156,7 +1156,7 @@ msgid ""
11561156
"random variable *X* will be near the given value *x*. Mathematically, it is "
11571157
"the limit of the ratio ``P(x <= X < x+dx) / dx`` as *dx* approaches zero."
11581158
msgstr""
1159-
"利用\\ `機率密度函式 (probability density function, pdf) <https://en."
1159+
"利用\\ `機率密度函數 (probability density function, pdf) <https://en."
11601160
"wikipedia.org/wiki/Probability_density_function>`_ 計算隨機變數 *X* 接近給定"
11611161
"值 *x* 的相對概度 (relative likelihood)。數學上,它是比率 ``P(x <= X < "
11621162
"x+dx) / dx`` 在 *dx* 趨近於零時的極限值。"
@@ -1277,7 +1277,7 @@ msgstr ":class:`NormalDist` 範例與錦囊妙計"
12771277

12781278
#:../../library/statistics.rst:927
12791279
msgid"Classic probability problems"
1280-
msgstr""
1280+
msgstr"經典機率問題"
12811281

12821282
#:../../library/statistics.rst:929
12831283
msgid":class:`NormalDist` readily solves classic probability problems."
@@ -1305,7 +1305,7 @@ msgstr ""
13051305

13061306
#:../../library/statistics.rst:956
13071307
msgid"Monte Carlo inputs for simulations"
1308-
msgstr""
1308+
msgstr"用於模擬的蒙地卡羅 (Monte Carlo) 輸入"
13091309

13101310
#:../../library/statistics.rst:958
13111311
msgid""
@@ -1314,12 +1314,12 @@ msgid ""
13141314
"Carlo simulation <https://en.wikipedia.org/wiki/Monte_Carlo_method>`_:"
13151315
msgstr""
13161316
"欲估計一個不易透過解析方法求解的模型的分布,:class:`NormalDist` 可以產生輸入"
1317-
"樣本以進行 `Monte Carlo 模擬 <https://en.wikipedia.org/wiki/"
1317+
"樣本以進行\\ `蒙地卡羅模擬 <https://en.wikipedia.org/wiki/"
13181318
"Monte_Carlo_method>`_:"
13191319

13201320
#:../../library/statistics.rst:975
13211321
msgid"Approximating binomial distributions"
1322-
msgstr""
1322+
msgstr"近似二項分布"
13231323

13241324
#:../../library/statistics.rst:977
13251325
msgid""
@@ -1346,7 +1346,7 @@ msgstr ""
13461346

13471347
#:../../library/statistics.rst:1016
13481348
msgid"Naive bayesian classifier"
1349-
msgstr""
1349+
msgstr"單純貝氏分類器 (Naive bayesian classifier)"
13501350

13511351
#:../../library/statistics.rst:1018
13521352
msgid"Normal distributions commonly arise in machine learning problems."
@@ -1401,13 +1401,13 @@ msgstr ""
14011401

14021402
#:../../library/statistics.rst:1073
14031403
msgid"Kernel density estimation"
1404-
msgstr""
1404+
msgstr"核密度估計 (Kernel density estimation)"
14051405

14061406
#:../../library/statistics.rst:1075
14071407
msgid""
14081408
"It is possible to estimate a continuous probability density function from a "
14091409
"fixed number of discrete samples."
1410-
msgstr""
1410+
msgstr"可以從固定數量的離散樣本估計出連續機率密度函式。"
14111411

14121412
#:../../library/statistics.rst:1078
14131413
msgid""
@@ -1418,6 +1418,9 @@ msgid ""
14181418
"smoothing is controlled by a single parameter, ``h``, representing the "
14191419
"variance of the kernel function."
14201420
msgstr""
1421+
"基本想法是使用\\ `一個核函式如常態分布、三角分布或均勻分布 <https://en."
1422+
"wikipedia.org/wiki/Kernel_(statistics)#Kernel_functions_in_common_use>`_\\ 來"
1423+
"使資料更加平滑。平滑程度由單個參數 ``h`` 控制,代表核函數的變異數。"
14211424

14221425
#:../../library/statistics.rst:1097
14231426
msgid""
@@ -1426,11 +1429,14 @@ msgid ""
14261429
"recipe to generate and plot a probability density function estimated from a "
14271430
"small sample:"
14281431
msgstr""
1432+
"`維基百科有一個範例 <https://en.wikipedia.org/wiki/"
1433+
"Kernel_density_estimation#Example>`_,我們可以使用 ``kde_normal()`` 這個錦囊"
1434+
"妙計來生成並繪製從小樣本估計的機率密度函式:"
14291435

14301436
#:../../library/statistics.rst:1109
14311437
msgid"The points in ``xarr`` and ``yarr`` can be used to make a PDF plot:"
1432-
msgstr""
1438+
msgstr"``xarr`` 和 ``yarr`` 中的點可用於繪製 PDF 圖:"
14331439

14341440
#:../../library/statistics.rst:-1
14351441
msgid"Scatter plot of the estimated probability density function."
1436-
msgstr""
1442+
msgstr"估計機率密度函式的散點圖 (scatter plot)。"

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp